Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 85(9): 760-768, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732858

RESUMO

BACKGROUND: The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS: CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS: We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS: Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.


Assuntos
Transtorno Autístico/metabolismo , AMP Cíclico/metabolismo , Hipocampo/metabolismo , Deficiência Intelectual/metabolismo , Proteínas Repressoras/metabolismo , Memória Espacial/fisiologia , Animais , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Caracteres Sexuais , Transdução de Sinais
2.
Neurobiol Dis ; 76: 112-125, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25725420

RESUMO

The unfolded protein response (UPR) monitors the folding environment within the endoplasmic reticulum (ER). Accumulation of misfolded proteins within the ER activates the UPR resulting in the execution of adaptive or non-adaptive signaling pathways. α-Synuclein (α-syn) whose accumulation and aggregation define the pathobiology of Parkinson's disease (PD) has been shown to inhibit ER-Golgi transit of COPII vesicles. ATF6, a protective branch of the UPR, is processed via COPII mediated ER-Golgi transit following its activation via ER stress. Using cellular PD models together with biochemical reconstitution assays, we showed that α-syn inhibited processing of ATF6 directly through physical interactions and indirectly through restricted incorporation into COPII vesicles. Impaired ATF6 signaling was accompanied by decreased ER-associated degradation (ERAD) function and increased pro-apoptotic signaling. The mechanism by which α-syn inhibits ATF6 signaling expands our understanding of the role ER stress and the UPR play in neurodegenerative diseases such as PD.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Doença de Parkinson/metabolismo , Resposta a Proteínas não Dobradas , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Humanos , Neurônios/metabolismo , Transdução de Sinais , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA