Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 209(2): 346-353, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750336

RESUMO

Our recent data demonstrate a critical role of the RIG-I-like receptor family in regulating antifungal immunity against Aspergillus fumigatus in a murine model. However, the importance of this pathway in humans and the cell types that use this innate immune receptor family to detect A. fumigatus remain unresolved. In this study, using patients who underwent hematopoietic stem cell transplantation, we demonstrate that a polymorphism in human MAVS present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis. Moreover, in a separate cohort of confirmed invasive pulmonary aspergillosis patients, polymorphisms in the IFIH1 gene alter the inflammatory response, including IFN-responsive chemokines. Returning to our murine model, we now demonstrate that CD11c+ Siglec F+ alveolar macrophages require Mavs expression to maintain host resistance against A. fumigatus. Our data support the role of MAVS signaling in mediating antifungal immunity in both mice and humans at least in part through the role of MAVS-dependent signaling in alveolar macrophages.


Assuntos
Aspergillus fumigatus , Aspergilose Pulmonar Invasiva , Animais , Antifúngicos , Modelos Animais de Doenças , Humanos , Macrófagos Alveolares , Camundongos
2.
Front Immunol ; 12: 675294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322116

RESUMO

Aspergillus fumigatus airway infections are associated with increased rates of hospitalizations and declining lung function in patients with chronic lung disease. While the pathogenesis of invasive A. fumigatus infections is well studied, little is known about the development and progression of airway infections. Previous studies have demonstrated a critical role for the IL-1 cytokines, IL-1α and IL-1ß in enhancing pulmonary neutrophil recruitment during invasive aspergillosis. Here we use a mouse model of A. fumigatus airway infection to study the role of these IL-1 cytokines in immunocompetent mice. In the absence of IL-1 receptor signaling, mice exhibited reduced numbers of viable pulmonary neutrophils and increased levels of neutrophil apoptosis during fungal airway infection. Impaired neutrophil viability in these mice was associated with reduced pulmonary and systemic levels of G-CSF, and treatment with G-CSF restored both neutrophil viability and resistance to A. fumigatus airway infection. Taken together, these data demonstrate that IL-1 dependent G-CSF production plays a key role for host resistance to A. fumigatus airway infection through suppressing neutrophil apoptosis at the site of infection.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/patogenicidade , Pulmão/imunologia , Neutrófilos/fisiologia , Aspergilose Pulmonar/imunologia , Receptores de Interleucina-1/fisiologia , Animais , Apoptose/imunologia , Quimiocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Interleucina-1alfa , Interleucina-1beta , Pulmão/patologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia
3.
mSphere ; 6(1)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597172

RESUMO

Aspergillus fumigatus is a filamentous fungus which can cause multiple diseases in humans. Allergic broncho-pulmonary aspergillosis (ABPA) is a disease diagnosed primarily in cystic fibrosis patients caused by a severe allergic response often to long-term A. fumigatus colonization in the lungs. Mice develop an allergic response to repeated inhalation of A. fumigatus spores; however, no strains have been identified that can survive long-term in the mouse lung and cause ABPA-like disease. We characterized A. fumigatus strain W72310, which was isolated from the expectorated sputum of an ABPA patient, by whole-genome sequencing and in vitro and in vivo viability assays in comparison to a common reference strain, CEA10. W72310 was resistant to leukocyte-mediated killing and persisted in the mouse lung longer than CEA10, a phenotype that correlated with greater resistance to oxidative stressors, hydrogen peroxide, and menadione, in vitro In animals both sensitized and challenged with W72310, conidia, but not hyphae, were viable in the lungs for up to 21 days in association with eosinophilic airway inflammation, airway leakage, serum IgE, and mucus production. W72310-sensitized mice that were recall challenged with conidia had increased inflammation, Th1 and Th2 cytokines, and airway leakage compared to controls. Collectively, our studies demonstrate that a unique strain of A. fumigatus resistant to leukocyte killing can persist in the mouse lung in conidial form and elicit features of ABPA-like disease.IMPORTANCE Allergic broncho-pulmonary aspergillosis (ABPA) patients often present with long-term colonization of Aspergillus fumigatus Current understanding of ABPA pathogenesis has been complicated by a lack of long-term in vivo fungal persistence models. We have identified a clinical isolate of A. fumigatus, W72310, which persists in the murine lung and causes an ABPA-like disease phenotype. Surprisingly, while viable, W72310 showed little to no growth beyond the conidial stage in the lung. This indicates that it is possible that A. fumigatus can cause allergic disease in the lung without any significant hyphal growth. The identification of this strain of A. fumigatus can be used not only to better understand disease pathogenesis of ABPA and potential antifungal treatments but also to identify features of fungal strains that drive long-term fungal persistence in the lung. Consequently, these observations are a step toward helping resolve the long-standing question of when to utilize antifungal therapies in patients with ABPA and fungal allergic-type diseases.


Assuntos
Aspergilose Broncopulmonar Alérgica/classificação , Aspergilose Broncopulmonar Alérgica/microbiologia , Aspergillus fumigatus/patogenicidade , Pulmão/microbiologia , Fenótipo , Esporos Fúngicos/patogenicidade , Alérgenos/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/imunologia , Aspergilose Broncopulmonar Alérgica/patologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/isolamento & purificação , Citocinas/imunologia , Feminino , Humanos , Inflamação/microbiologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esporos Fúngicos/imunologia
4.
J Immunol ; 205(11): 3058-3070, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087405

RESUMO

RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.


Assuntos
Aspergillus fumigatus/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Feminino , Interferons/imunologia , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/imunologia
5.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947643

RESUMO

Heterogeneity among Aspergillus fumigatus isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment. Importantly, the clearance of CEA10 was consequently dependent on IL-1α, in contrast to Af293. The release of IL-1α occurred by a caspase 1/11- and P2XR7-independent mechanism but was dependent on calpain activity. Our finding that early fungal conidium germination drives greater lung damage and IL-1α-dependent inflammation is supported by three independent experimental lines. First, pregermination of Af293 prior to in vivo challenge drives greater lung damage and an IL-1α-dependent neutrophil response. Second, the more virulent EVOL20 strain, derived from Af293, is able to germinate in the airways, leading to enhanced lung damage and IL-1α-dependent inflammation and fungal clearance. Third, primary environmental A. fumigatus isolates that rapidly germinate under airway conditions follow the same trend toward IL-1α dependency. Our data support the hypothesis that A. fumigatus phenotypic variation significantly contributes to disease outcomes.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Interleucina-1alfa/imunologia , Pulmão/imunologia , Animais , Células Cultivadas , Imunocompetência , Inflamação , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Virulência
7.
Front Immunol ; 6: 238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042121

RESUMO

Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology.

8.
PLoS Pathog ; 10(9): e1004378, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255025

RESUMO

Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC) and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.


Assuntos
Aspergillus fumigatus/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata/imunologia , Pulmão/imunologia , Células Mieloides/imunologia , Neutrófilos/imunologia , Aspergilose Pulmonar/prevenção & controle , Animais , Apoptose , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas Imunoenzimáticas , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Aspergilose Pulmonar/imunologia , Aspergilose Pulmonar/metabolismo , Aspergilose Pulmonar/microbiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
PLoS One ; 9(8): e106060, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25166494

RESUMO

Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Ligante CD27/imunologia , Antígenos CD40/agonistas , Linfócitos T CD8-Positivos/metabolismo , Estomatite Vesicular/terapia , Animais , Antígenos CD40/imunologia , Feminino , Imunoterapia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Estomatite Vesicular/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia
10.
PLoS One ; 8(2): e56539, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409193

RESUMO

Programmed death ligand-1 (PD-L1) is an important negative regulator of T cell immune responses via interactions with PD-1 and CD80. However, PD-L1 can also act as a positive costimulator, but the relevant counterreceptor is not known. We analyzed the role of PD-L1 in CD8-T cell responses to infection with Listeria monocytogenes (LM) or vesicular stomatitis virus (VSV). PD-L1 blockade impaired antigen-specific CD8 effector T cell expansion in response to LM, but not to VSV infection, particularly limiting short-lived effector cell differentiation. Simultaneous CD4-T cell depletion and anti-PD-L1 blockade revealed that PD-L1 provided costimulation even in the absence of CD4-T cells. Most importantly, specific blockade of PD-L1 binding to CD80 or to PD-1 did not recapitulate PDL-1 blockade. The results suggested that PD-L1 plays an important costimulatory role for antigen-specific CD8 T cells during LM infection perhaps through a distinct receptor or interaction epitope.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Transdução de Sinais , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Diferenciação/imunologia , Antígeno B7-1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Proliferação de Células , Epitopos de Linfócito T/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Regulação para Cima , Vesiculovirus/imunologia
11.
J Immunol ; 187(10): 4967-78, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21987662

RESUMO

In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Listeriose/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/patologia , Animais , Citotoxicidade Imunológica , Feminino , Memória Imunológica , Inflamação/microbiologia , Inflamação/virologia , Listeriose/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia
12.
Immunol Rev ; 235(1): 206-18, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20536565

RESUMO

The control of the differentiation pathways followed by responding CD8(+) T cells to produce protective memory cells has been intensely studied. Recent developments have identified heterogeneity at the effector cytotoxic T-lymphocyte level within which a bona fide memory cell precursor has emerged. The challenge now is to identify the cellular and molecular factors that control this developmental pathway. This review considers aspects of the regulation of the induction of effectors, the transition of effectors to memory cells, and the dynamics of the memory population.


Assuntos
Citotoxicidade Imunológica , Memória Imunológica , Ativação Linfocitária , Linfócitos T Citotóxicos/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Doenças Transmissíveis/imunologia , Citocinas/metabolismo , Humanos , Transdução de Sinais
13.
J Virol ; 80(17): 8303-15, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16912282

RESUMO

In herpesvirus infections, the virus persists for life but is contained through T-cell-mediated immune surveillance. How this immune surveillance operates is poorly understood. Recent studies of other persistent infections have indicated that virus persistence is associated with functional deficits in the CD8(+) T-cell response. To test whether this is the case in a herpesvirus infection, we used a mutant murine gammaherpesvirus that is defective in its ability to persist in the host. By comparing the immune response to this virus with a revertant virus that can persist, we were able to dissect the changes in the antiviral CD8(+) T-cell response that are induced by virus persistence. Surprisingly, persistently infected mice controlled a secondary challenge infection more rapidly than nonpersistently infected mice, indicating enhanced rather than diminished effector functions. Consistent with this, virus-specific CD8 T cells from these mice exhibited faster upregulation of the cytotoxic mediator granzyme B. Another unexpected finding was that CD8(+) T cells from neither infection responded efficiently to homeostatic cytokines. The unresponsiveness of the memory cells from the nonpersistently infected mice appears to be linked to the prolonged replication of virus within the lungs. Other changes seen in different chronic infection models were also observed, such as changes in Bcl-2 levels, interleukin-2 production, and the immunodominance hierarchy. These data show persistence of gammaherpesvirus type 68 alters the properties of CD8(+) T cells and illustrates that immune surveillance does not require CD8 T cells with the same attributes as "classical" memory CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/patologia , Gammaherpesvirinae/fisiologia , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Memória Imunológica , Animais , Linfócitos T CD8-Positivos/imunologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Latência Viral
14.
J Virol ; 80(18): 9159-70, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940527

RESUMO

The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86(-/-) mice. In the absence of CD80/CD86, primary antiviral CD8(+) T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8(+) T cells were impaired in IFN-gamma production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.


Assuntos
Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Linfócitos T CD8-Positivos/metabolismo , Vigilância Imunológica , Rhadinovirus/genética , Animais , Antígenos CD , Antígenos de Diferenciação/metabolismo , Antígenos CD28/biossíntese , Antígeno CTLA-4 , Sistema Imunitário , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Baço/metabolismo
15.
J Immunol ; 173(4): 2705-14, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15294989

RESUMO

IL-15 is known to be critical in the homeostasis of Ag-specific memory CD8(+) T cells following acute viral infection. However, little is known about the homeostatic requirements of memory CD8(+) T cells during a latent viral infection. We have used the murine gammaherpesvirus-68 (MHV-68) model system to investigate whether IL-15 is necessary for the maintenance of memory CD8(+) T cells during a latent viral infection. IL-15 is not essential either for the initial control of MHV-68 infection or for the maintenance of MHV-68-specific memory CD8(+) T cells. Even at 140 days postinfection, the proportion of CD8(+) T cells recognizing the MHV-68 epitopes were the same as in control mice. The maintenance of these memory CD8(+) T cells was attributable to their ability to turn over in vivo, probably in response to the presence of low levels of Ag. IL-15(-/-) mice had a significantly higher turnover rate within the virus-specific memory CD8(+) T cell population, which was the result of increased levels of viral gene expression rather than an increase in viral load. These cells did not accumulate in the spleens of the IL-15(-/-) mice due to an increased sensitivity to apoptosis as a result of decreased Bcl-2 levels. Intriguingly, memory CD8(+) T cells from latently infected mice failed to undergo homeostatic proliferation in a naive secondary host. These data highlight fundamental differences between memory CD8(+) T cells engaged in active immune surveillance of latent viral infections vs memory CD8(+) T cells found after acute viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Memória Imunológica , Vigilância Imunológica , Interleucina-15/imunologia , Transferência Adotiva , Animais , Divisão Celular/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Gammaherpesvirinae/imunologia , Gammaherpesvirinae/fisiologia , Interleucina-15/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Carga Viral , Latência Viral
16.
J Immunol ; 172(2): 1213-9, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14707099

RESUMO

Gammaherpesviruses can persist in the host in the face of an aggressive immune response. T cells recognize Ags expressed in both the productive and latent phases of the virus life cycle, however little is known about their relative roles in the long-term control of the infection. In this study we used the murine gammaherpesvirus 68 model system to investigate the relative properties of CD8 T cells recognizing lytic and latent viral Ags. We report that the CD8 T cell response to lytic phase epitopes is maximal in the lungs of infected mice at approximately 10 days postinfection, and is of progressively lesser magnitude in the mediastinal lymph nodes and spleen. In contrast, the CD8 T cell response to the latent M2 protein is maximal at approximately 19 days postinfection and is most prominent in the spleen, then progressively less in the mediastinal lymph node and the lung. Latent and lytic Ag-specific CD8 T cells had markedly different cell surface phenotypes during chronic infection, with latent Ag-specific cells being predominantly CD62L(high) or CD43 (1B11)(high). Lytic Ag-specific T cells had significantly lower expression of these markers. Importantly, latent but not lytic Ag-specific T cells could kill target cells rapidly in vivo during the chronic infection. These two different sets of CD8 T cells also responded differentially to IL-7, a cytokine involved in T cell homeostasis and the maintenance of T cell memory. These data have important implications for our understanding of immunological control during chronic gammaherpesvirus infections.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/fisiologia , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Latência Viral/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Doença Crônica , Testes Imunológicos de Citotoxicidade , Feminino , Epitopos Imunodominantes/fisiologia , Imunofenotipagem , Interleucina-15/farmacologia , Interleucina-7/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C
17.
J Virol Methods ; 108(1): 49-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12565153

RESUMO

Murine AIDS (MAIDS) develops in susceptible mouse strains after infection with the LP-BM5 murine leukemia virus (MuLV) complex that contains a mixture of defective (BM5def) and replication-competent viruses. While the BM5def virus is the causative agent in MAIDS, the replication-competent viruses in LP-BM5, including ecotropic MuLV (BM5eco), are required for BM5def propagation and thus function as helper viruses. We describe quantitative real-time RT-PCR assays for RNA encoded by the BM5def and BM5eco components of LP-BM5. The assays were used to standardize better the input doses of LP-BM5 viruses across viral preparations and to quantify BM5def and BM5eco gag RNA levels in spleen and blood cells from MAIDS-susceptible and -insusceptible infected mice. Spleens of MAIDS-susceptible infected mice harbored approximately similar levels of BM5def gag RNA as infected spleens of mice that are insusceptible to MAIDS due to lack of CD40. In contrast, the same infected spleens of CD40-deficient mice contained substantially higher (up to 10-fold) levels of BM5eco gag RNA compared with susceptible controls. Similar to that seen in spleen, infected blood of CD40-deficient mice contained similar levels of BM5def gag as susceptible strains, but increased levels (up to threefold) of BM5eco gag RNA. The assays described below can be used to characterize better the contributions of different functional viral components of the LP-BM5 mixture to the development of MAIDS.


Assuntos
Vírus da Leucemia Murina/genética , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virologia/métodos , Animais , Sequência de Bases , Primers do DNA/genética , Expressão Gênica , Genes gag , Vírus Auxiliares/genética , Vírus da Leucemia Murina/patogenicidade , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Síndrome de Imunodeficiência Adquirida Murina/virologia , RNA Viral/sangue , Baço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA