Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chest ; 161(5): 1155-1166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104449

RESUMO

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética
2.
Sci Rep ; 11(1): 8282, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859282

RESUMO

The classical M1/M2 polarity of macrophages may not be applicable to inflammatory lung diseases including chronic obstructive pulmonary disease (COPD) due to the complex microenvironment in lungs and the plasticity of macrophages. We examined macrophage sub-phenotypes in bronchoalveolar lavage (BAL) fluid in 25 participants with CD40 (a M1 marker) and CD163 (a M2 marker). Of these, we performed RNA-sequencing on each subtype in 10 patients using the Illumina NextSeq 500. Approximately 25% of the macrophages did not harbor classical M1 or M2 surface markers (double negative, DN), and these cells were significantly enriched in COPD patients compared with non-COPD patients (46.7% vs. 14.5%, p < 0.001). 1886 genes were differentially expressed in the DN subtype compared with  all other subtypes at a 10% false discovery rate. The 602 up-regulated genes included 15 mitochondrial genes and were enriched in 86 gene ontology (GO) biological processes including inflammatory responses. Modules associated with cellular functions including oxidative phosphorylation were significantly down-regulated in the DN subtype. Macrophages in the human BAL fluid, which were negative for both M1/M2 surface markers, harbored a gene signature that was pro-inflammatory and suggested dysfunction in cellular homeostasis. These macrophages may contribute to the pathogenesis and manifestations of inflammatory lung diseases such as COPD.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Antígenos de Superfície , Líquido da Lavagem Broncoalveolar/citologia , Antígenos CD40 , Macrófagos , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptores de Superfície Celular , Homeostase/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Fosforilação Oxidativa
3.
PLoS Genet ; 17(3): e1009254, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33667223

RESUMO

Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias do Sistema Digestório/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alelos , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias do Sistema Digestório/metabolismo , Neoplasias do Sistema Digestório/patologia , Genótipo , Humanos , Razão de Chances , Transdução de Sinais
4.
FASEB J ; 35(3): e21376, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605487

RESUMO

Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.


Assuntos
Doença Pulmonar Obstrutiva Crônica/etiologia , Receptores de Hidrocarboneto Arílico/deficiência , Idoso , Idoso de 80 Anos ou mais , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Enfisema/etiologia , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Fumar/efeitos adversos
5.
J Infect Dis ; 223(10): 1681-1689, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32959881

RESUMO

BACKGROUND: Whether accelerated aging develops over the course of chronic human immunodeficiency virus (HIV) infection or can be observed before significant immunosuppression on is unknown. We studied DNA methylation in blood to estimate cellular aging in persons living with HIV (PLWH) before the initiation of antiretroviral therapy (ART). METHODS: A total of 378 ART-naive PLWH who had CD4 T-cell counts >500/µL and were enrolled in the Strategic Timing of Antiretroviral Therapy trial (Pulmonary Substudy) were compared with 34 HIV-negative controls. DNA methylation was performed using the Illumina MethylationEPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in PLWH compared with controls were identified using a robust linear model. Methylation age was calculated using a previously described epigenetic clock. RESULTS: There were a total of 56 639 DMPs and 6103 DMRs at a false discovery rate of <0.1. The top 5 DMPs corresponded to genes NLRC5, VRK2, B2M, and GPR6 and were highly enriched for cancer-related pathways. PLWH had significantly higher methylation age than HIV-negative controls (P = .001), with black race, low CD4 and high CD8 T-cell counts, and duration of HIV being risk factors for age acceleration. CONCLUSIONS: PLWH before the initiation of ART and with preserved immune status show evidence of advanced methylation aging.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , Infecções por HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos
6.
Lancet Respir Med ; 8(7): 696-708, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649918

RESUMO

BACKGROUND: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. METHODS: We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. FINDINGS: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74-1·88] and non-European (1·42 [1·34-1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56-9·72) in European ancestry and 4·83 (3·45-6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79-0·81] vs 0·76 [0·75-0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. INTERPRETATION: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth. FUNDING: US National Institutes of Health, Wellcome Trust.


Assuntos
Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fatores de Risco , Capacidade Vital
7.
Nat Commun ; 11(1): 27, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911640

RESUMO

Impaired lung function is often caused by cigarette smoking, making it challenging to disentangle its role in lung cancer susceptibility. Investigation of the shared genetic basis of these phenotypes in the UK Biobank and International Lung Cancer Consortium (29,266 cases, 56,450 controls) shows that lung cancer is genetically correlated with reduced forced expiratory volume in one second (FEV1: rg = 0.098, p = 2.3 × 10-8) and the ratio of FEV1 to forced vital capacity (FEV1/FVC: rg = 0.137, p = 2.0 × 10-12). Mendelian randomization analyses demonstrate that reduced FEV1 increases squamous cell carcinoma risk (odds ratio (OR) = 1.51, 95% confidence intervals: 1.21-1.88), while reduced FEV1/FVC increases the risk of adenocarcinoma (OR = 1.17, 1.01-1.35) and lung cancer in never smokers (OR = 1.56, 1.05-2.30). These findings support a causal role of pulmonary impairment in lung cancer etiology. Integrative analyses reveal that pulmonary function instruments, including 73 novel variants, influence lung tissue gene expression and implicate immune-related pathways in mediating the observed effects on lung carcinogenesis.


Assuntos
Neoplasias Pulmonares/genética , Pulmão/fisiopatologia , Adulto , Idoso , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/fisiopatologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Testes de Função Respiratória , Capacidade Vital
8.
Wellcome Open Res ; 5: 111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33728380

RESUMO

Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 ß=0.028 [SE 0.0022] litres) than females (ß=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.

9.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710517

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Assuntos
Fibrose Pulmonar Idiopática/genética , Idoso , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Transdução de Sinais , Fuso Acromático , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Cancer ; 146(7): 1862-1878, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696517

RESUMO

We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.


Assuntos
Biomarcadores Tumorais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Transcriptoma , Linhagem Celular Tumoral , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
11.
Sci Rep ; 9(1): 17600, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772224

RESUMO

Epidemiological studies have shown that female smokers are at higher risk of chronic obstructive pulmonary disease (COPD). Female patients have worse symptoms and health status and increased risk of exacerbations. We determined the differences in the transcriptome of the airway epithelium between males and females, as well the sex-by-smoking interaction. We processed public gene expression data of human airway epithelium into a discovery cohort of 211 subjects (never smokers n = 68; current smokers n = 143) and two replication cohorts of 104 subjects (21 never, 52 current, and 31 former smokers) and 238 subjects (99 current and 139 former smokers. We analyzed gene differential expression with smoking status, sex, and smoking-by-sex interaction and used network approaches for modules' level analyses. We identified and replicated two differentially expressed modules between the sexes in response to smoking with genes located throughout the autosomes and not restricted to sex chromosomes. The two modules were enriched in autophagy (up-regulated in female smokers) and response to virus and type 1 interferon signaling pathways which were down-regulated in female smokers compared to males. The results offer insights into the molecular mechanisms of the sexually dimorphic effect of smoking, potentially enabling a precision medicine approach to smoking related lung diseases.


Assuntos
Caracteres Sexuais , Fumar Tabaco/genética , Transcriptoma , Adulto , Autofagia/genética , Mineração de Dados , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , não Fumantes , Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica/etiologia , Transdução de Sinais/genética , Fumantes , Abandono do Hábito de Fumar
13.
Med J Aust ; 210(9): 424-428, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977152

RESUMO

Chronic obstructive pulmonary disease (COPD) is defined based on a reduced ratio of forced expiratory volume in one second (FEV1 ) to forced vital capacity (FVC) on spirometry. However, within this definition, there is significant heterogeneity of pathophysiological processes that lead to airflow obstruction and variation in phenotypic manifestations across patients. Current pharmacological treatments are based on large randomised clinical trials that apply to an "average" patient. Precision health enables tailoring of treatment for each individual patient by taking into account their unique characteristics. The number needed to treat (NNT) metric is often used to define implementation of precision health for specific interventions, with common endpoints requiring an NNT ≤ 5 to achieve precision therapy. Higher NNTs may be acceptable for rare but important endpoints such as mortality. Long-acting muscarinic antagonists and inhaled corticosteroids, which are commonly used in COPD, have 1-year treatment NNTs between 15 and 20 for exacerbation prevention in unselected patients with COPD. Subgroup identification using biomarkers or clinical traits may enable precision health. For example, NNT for inhaled corticosteroids is 9 in patients with a blood eosinophil count ≥ 300 cells/µL and 8 for long-acting muscarinic antagonists in patients with a body mass index ≤ 20 kg/m2 . Lung volume reduction surgery is associated with an NNT of 6 for survival over 5 years in patients with upper lobe-predominant disease and low exercise capacity (whereas the NNT is 245 when no bioimaging or exercise markers are used). Continuous domiciliary oxygen therapy (for at least 15 hours/day) has an NNT of 5 for survival over 5 years in patients with resting hypoxemia (PaO2  < 60 mmHg on room air). Emerging areas of precision health in COPD with potential for low NNTs in specific circumstances include anti-interleukin-5 therapy for eosinophilic COPD, and immunoglobulin replacement therapy for patients with severe immunoglobulin deficiency.


Assuntos
Biomarcadores , Números Necessários para Tratar , Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica/terapia , Administração por Inalação , Corticosteroides/administração & dosagem , Broncodilatadores/administração & dosagem , Volume Expiratório Forçado , Humanos , Antagonistas Muscarínicos/administração & dosagem , Oxigenoterapia , Doença Pulmonar Obstrutiva Crônica/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Espirometria
14.
Nat Genet ; 51(3): 481-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804560

RESUMO

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.


Assuntos
Predisposição Genética para Doença/genética , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fumar/genética
15.
Nat Genet ; 51(3): 494-505, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804561

RESUMO

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.


Assuntos
Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Idoso , Asma/genética , Estudos de Casos e Controles , Feminino , Expressão Gênica/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fibrose Pulmonar/genética , Fumar/genética
16.
Nat Commun ; 9(1): 2976, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061609

RESUMO

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Pneumopatias/etnologia , Pneumopatias/genética , Pulmão/fisiologia , Polimorfismo de Nucleotídeo Único , Asiático , População Negra/genética , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Genômica , Hispânico ou Latino , Humanos , Masculino , Doença Pulmonar Obstrutiva Crônica , Locos de Características Quantitativas , Análise de Regressão , Tamanho da Amostra , Fumar , Capacidade Vital , População Branca/genética
17.
Sci Rep ; 8(1): 11881, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089872

RESUMO

Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The "human smoking" gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of "severe COPD" (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10-26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10-12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD.


Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Fumaça/efeitos adversos , Fumar/genética , Transcriptoma/genética , Animais , Humanos , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo
18.
Respir Res ; 19(1): 59, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631575

RESUMO

BACKGROUND: Smoking is the principal modifiable environmental risk factor for chronic obstructive pulmonary disease (COPD) which affects 300 million people and is the 3rd leading cause of death worldwide. Most of the genetic studies of smoking have relied on self-reported smoking status which is vulnerable to reporting and recall bias. Using data from the Lung Health Study (LHS), we sought to identify genetic variants associated with quantitative smoking and cessation in individuals with mild to moderate COPD. METHODS: The LHS is a longitudinal multicenter study of mild-to-moderate COPD subjects who were all smokers at recruitment. We performed genome-wide association studies (GWASs) for salivary cotinine (n = 4024), exhaled carbon monoxide (eCO) (n = 2854), cigarettes per day (CPD) (n = 2706) and smoking cessation at year 5 follow-up (n = 717 quitters and 2175 smokers). The GWAS analyses were adjusted for age, gender, and genetic principal components. RESULTS: For cotinine levels, SNPs near UGT2B10 gene achieved genome-wide significance (i.e. P < 5 × 10- 8) with top SNP rs10023464, P = 1.27 × 10- 11. For eCO levels, one significant SNP was identified which mapped to the CHRNA3 gene (rs12914385, P = 2.38 × 10- 8). A borderline region mapping to KCNMA1 gene was associated with smoking cessation (rs207675, P = 5.95 × 10- 8). Of the identified loci, only the CHRNA3/5 locus showed significant associations with lung function but only in heavy smokers. No regions met genome-wide significance for CPD. CONCLUSION: The study demonstrates that using objective measures of smoking such as eCO and/or salivary cotinine can more precisely capture the genetic contribution to multiple aspects of smoking behaviour. The KCNMA1 gene association with smoking cessation may represent a potential therapeutic target and warrants further studies. TRIAL REGISTRATION: The Lung Health Study ClinicalTrials.gov Identifier: NCT00000568 . Date of registration: October 28, 1999.


Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/epidemiologia , Fumar/genética , Adulto , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Fumar/terapia , Abandono do Hábito de Fumar/métodos
19.
Eur J Hum Genet ; 26(5): 709-722, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29422661

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10-8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180:C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489). All four variants were significantly associated (P < 1.4 × 10-6) with blood DNA methylation of IREB2, CHRNA3 and PSMA4, of which two, including IREB2 and PSMA4, were also differentially methylated in COPD cases and controls (P < 0.04). Further additive and multiplicative effects of smoking were evaluated and no significant effect was observed. To evaluate if these four genetic variants are expression quantitative trait loci, transcriptome-wide association analysis was performed in 1087 lung samples. All four variants were also significantly associated with differential expression of the IREB2 3'UTR in lung tissues (P < 5.4 × 10-95). We conclude that regulatory mechanisms affecting the expression of IREB2 gene, such as DNA methylation, may explain the association between genetic variants in chromosome 15q25.1 and COPD, largely independent of smoking.


Assuntos
Metilação de DNA/genética , Proteína 2 Reguladora do Ferro/genética , Complexo de Endopeptidases do Proteassoma/genética , Doença Pulmonar Obstrutiva Crônica/genética , Receptores Nicotínicos/genética , Idoso , Cromossomos Humanos Par 15/genética , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Locos de Características Quantitativas/genética , Fatores de Risco
20.
Am J Respir Crit Care Med ; 197(1): 56-65, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28886252

RESUMO

RATIONALE: Studies of excised lungs show that significant airway attrition in the "quiet" zone occurs early in chronic obstructive pulmonary disease (COPD). OBJECTIVES: To determine if the total number of airways quantified in vivo using computed tomography (CT) reflects early airway-related disease changes and is associated with lung function decline independent of emphysema in COPD. METHODS: Participants in the multicenter, population-based, longitudinal CanCOLD (Canadian Chronic Obstructive Lung Disease) study underwent inspiratory/expiratory CT at visit 1; spirometry was performed at four visits over 6 years. Emphysema was quantified as the CT inspiratory low-attenuation areas below -950 Hounsfield units. CT total airway count (TAC) was measured as well as airway inner diameter and wall area using anatomically equivalent airways. MEASUREMENTS AND MAIN RESULTS: Participants included never-smokers (n = 286), smokers with normal spirometry at risk for COPD (n = 298), Global Initiative for Chronic Obstructive Lung Disease (GOLD) I COPD (n = 361), and GOLD II COPD (n = 239). TAC was significantly reduced by 19% in both GOLD I and GOLD II compared with never-smokers (P < 0.0001) and by 17% in both GOLD I and GOLD II compared with at-risk participants (P < 0.0001) after adjusting for low-attenuation areas below -950 Hounsfield units. Further analysis revealed parent airways with missing daughter branches had reduced inner diameters (P < 0.0001) and thinner walls (P < 0.0001) compared with those without missing daughter branches. Among all CT measures, TAC had the greatest influence on FEV1 (P < 0.0001), FEV1/FVC (P < 0.0001), and bronchodilator responsiveness (P < 0.0001). TAC was independently associated with lung function decline (FEV1, P = 0.02; FEV1/FVC, P = 0.01). CONCLUSIONS: TAC may reflect the airway-related disease changes that accumulate in the "quiet" zone in early/mild COPD, indicating that TAC acquired with commercially available software across various CT platforms may be a biomarker to predict accelerated COPD progression.


Assuntos
Obstrução das Vias Respiratórias/diagnóstico por imagem , Progressão da Doença , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Obstrução das Vias Respiratórias/patologia , Canadá , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Humanos , Modelos Logísticos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Medição de Risco , Índice de Gravidade de Doença , Fumar/efeitos adversos , Fumar/epidemiologia , Espirometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA