Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37716648

RESUMO

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Assuntos
Doenças do Cabelo , Ceratodermia Palmar e Plantar , Anormalidades da Pele , Animais , Humanos , Camundongos , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmossomos/metabolismo , Cabelo/metabolismo , Doenças do Cabelo/genética , Doenças do Cabelo/metabolismo , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/metabolismo , Pele/metabolismo , Anormalidades da Pele/metabolismo
2.
Sci Rep ; 13(1): 4046, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899057

RESUMO

A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes physiological hypertrophy in vitro. The purpose of this study is to determine if AKIP1 promotes physiological cardiomyocyte hypertrophy in vivo. Therefore, adult male mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and wild type (WT) littermates were caged individually for four weeks in the presence or absence of a running wheel. Exercise performance, heart weight to tibia length (HW/TL), MRI, histology, and left ventricular (LV) molecular markers were evaluated. While exercise parameters were comparable between genotypes, exercise-induced cardiac hypertrophy was augmented in AKIP1-TG vs. WT mice as evidenced by an increase in HW/TL by weighing scale and in LV mass on MRI. AKIP1-induced hypertrophy was predominantly determined by an increase in cardiomyocyte length, which was associated with reductions in p90 ribosomal S6 kinase 3 (RSK3), increments of phosphatase 2A catalytic subunit (PP2Ac) and dephosphorylation of serum response factor (SRF). With electron microscopy, we detected clusters of AKIP1 protein in the cardiomyocyte nucleus, which can potentially influence signalosome formation and predispose a switch in transcription upon exercise. Mechanistically, AKIP1 promoted exercise-induced activation of protein kinase B (Akt), downregulation of CCAAT Enhancer Binding Protein Beta (C/EBPß) and de-repression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4). Concludingly, we identified AKIP1 as a novel regulator of cardiomyocyte elongation and physiological cardiac remodelling with activation of the RSK3-PP2Ac-SRF and Akt-C/EBPß-CITED4 pathway. These findings suggest that AKIP1 may serve as a nodal point for physiological reprogramming of cardiac remodelling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Miócitos Cardíacos , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular
3.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922643

RESUMO

ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Cardiomegalia/patologia , Mitocôndrias/patologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas/genética , Ratos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Proteína Inibidora de ATPase
4.
Cardiovasc Drugs Ther ; 34(3): 311-321, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185580

RESUMO

BACKGROUND: The use of sodium-glucose co-transporter 2 inhibitors (SGLT2i) is currently expanding to cardiovascular risk reduction in non-diabetic subjects, but renal (side-)effects are less well studied in this setting. METHODS: Male non-diabetic Sprague Dawley rats underwent permanent coronary artery ligation to induce MI, or sham surgery. Rats received chow containing empagliflozin (EMPA) (30 mg/kg/day) or control chow. Renal function and electrolyte balance were measured in metabolic cages. Histological and molecular markers of kidney injury, parameters of phosphate homeostasis and bone resorption were also assessed. RESULTS: EMPA resulted in a twofold increase in diuresis, without evidence for plasma volume contraction or impediments in renal function in both sham and MI animals. EMPA increased plasma magnesium levels, while the levels of glucose and other major electrolytes were comparable among the groups. Urinary protein excretion was similar in all treatment groups and no histomorphological alterations were identified in the kidney. Accordingly, molecular markers for cellular injury, fibrosis, inflammation and oxidative stress in renal tissue were comparable between groups. EMPA resulted in a slight increase in circulating phosphate and PTH levels without activating FGF23-Klotho axis in the kidney and bone mineral resorption, measured with CTX-1, was not increased. CONCLUSIONS: EMPA exerts profound diuretic effects without compromising renal structure and function or causing significant electrolyte imbalance in a non-diabetic setting. The slight increase in circulating phosphate and PTH after EMPA treatment was not associated with evidence for increased bone mineral resorption suggesting that EMPA does not affect bone health.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Infarto do Miocárdio/complicações , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Compostos Benzidrílicos/toxicidade , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Glucosídeos/toxicidade , Rim/patologia , Rim/fisiopatologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/toxicidade , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
5.
Eur J Heart Fail ; 21(7): 862-873, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033127

RESUMO

AIMS: Sodium-glucose co-transporter 2 (SGLT2) inhibition reduces heart failure hospitalizations in patients with diabetes, irrespective of glycaemic control. We examined the effect of SGLT2 inhibition with empagliflozin (EMPA) on cardiac function in non-diabetic rats with left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Non-diabetic male Sprague-Dawley rats underwent permanent coronary artery ligation to induce MI, or sham surgery. Rats received chow containing EMPA that resulted in an average daily intake of 30 mg/kg/day or control chow, starting before surgery (EMPA-early) or 2 weeks after surgery (EMPA-late). Cardiac function was assessed using echocardiography and histological and molecular markers of cardiac remodelling and metabolism were assessed in the left ventricle. Renal function was assessed in metabolic cages. EMPA increased urine production by two-fold without affecting creatinine clearance and serum electrolytes. EMPA did not influence MI size, but LV ejection fraction (LVEF) was significantly higher in the EMPA-early and EMPA-late treated MI groups compared to the MI group treated with vehicle (LVEF 54%, 52% and 43%, respectively, all P < 0.05). EMPA also attenuated cardiomyocyte hypertrophy, diminished interstitial fibrosis and reduced myocardial oxidative stress. EMPA treatment reduced mitochondrial DNA damage and stimulated mitochondrial biogenesis, which was associated with the normalization of myocardial uptake and oxidation of glucose and fatty acids. EMPA increased circulating ketone levels as well as myocardial expression of the ketone body transporter and two critical ketogenic enzymes, indicating that myocardial utilization of ketone bodies was increased. Together these metabolic changes were associated with an increase in cardiac ATP production. CONCLUSION: Empagliflozin favourably affects cardiac function and remodelling in non-diabetic rats with LV dysfunction after MI, associated with substantial improvements in cardiac metabolism and cardiac ATP production. Importantly, it did so without renal adverse effects. Our data suggest that EMPA might be of benefit in heart failure patients without diabetes.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca , Infarto do Miocárdio/complicações , Disfunção Ventricular Esquerda , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Ecocardiografia/métodos , Metabolismo Energético/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Resultado do Tratamento , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
6.
J Mol Cell Cardiol ; 35(7): 823-31, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12818573

RESUMO

Cardiomyocytes (CMCs) are extremely difficult to transfect with non-viral techniques, but they are efficiently infected by adenoviruses. The most commonly used promoters to drive protein expression in cardiac myocytes are of viral origin, since they are believed to be constitutively active and minimally regulated by physiological or pharmacological challenge of cells. In recombinant adenoviruses, we systematically compared three different promoters: the cytomegalovirus (CMV), the Rous sarcoma virus (RSV), and a synthetic promoter with three MEF2 transcription factor-binding sites upstream of the heat-shock protein 68 minimal promoter. We determined their basal activity in primary cardiac cells as well as their possible stimulation by commonly used agonists. The CMV promoter was activated up to 60-fold by the phorbol ester phorbol myristate acetate (PMA) and/or forskolin in neonatal rat CMCs and cardiac fibroblasts. Primary adult rat CMCs had higher basal expression from the CMV promoter that was not activated by PMA or forskolin. The RSV promoter was less affected by agonists and was more active in cardiac myocytes compared to cardiac fibroblasts. The MEF2-responsive promoter showed high basal expression in both myocytes and fibroblasts, and minimal induction by phorbol esters and forskolin. The relevance of reporter gene induction was confirmed with a contractile protein, troponin T (TnT). The CMV promoter driving TnT could be induced more than 15-fold with phenylephrine or forskolin to replace the endogenous protein almost to completion at a multiplicity of infection of 10. These results suggest the following use of the tested promoters: an inducible system (CMV), a myocyte-enriched system (RSV), or a stable control system (MEF2).


Assuntos
Técnicas de Transferência de Genes , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Adenoviridae , Animais , Western Blotting , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Vetores Genéticos , Fatores de Transcrição MEF2 , Camundongos , Fatores de Regulação Miogênica , Ratos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA