Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1415: 67-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440016

RESUMO

Age-related macular degeneration (AMD) is associated with an overactive complement system and an increase in circulating antibodies. Our search for potential neoantigens that can trigger complement activation in disease has led us to investigate elastin. A loss of the elastin layer (EL) of Bruch's membrane (BrM) has been reported in aging and AMD together with an increase of serum elastin-derived peptides and α-elastin antibodies. In the mouse model of cigarette smoke exposure (CSE), damage in BrM, loss of the EL, and vision loss are dependent on complement activation. We have examined the hypothesis that CSE generates immunogenic elastin neoepitopes that trigger an increase in α-elastin IgG and IgM antibodies, which can then bind to the neoepitopes in the target cells or membranes, triggering complement activation. Specifically, we showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin) exacerbated ocular pathology and vision loss in CSE mice. In contrast, mice receiving peptide immunotherapy (PIT) with ox-elastin did not lose vision over the smoking period and exhibited a more preserved BrM. Immunization and PIT correlated with humoral immunity and complement activation and IgG/IgM deposition in the RPE/BrM/choroid. Finally, PIT modulated immune markers IFNγ and IL-4. The data further support the hypothesis that complement activation, triggered by immune complex formation in target tissues, plays a role in ocular damage in the CSE model. As PIT with ox-elastin peptides reduces damage, we discuss the possibility that AMD progression might be preventable.


Assuntos
Lâmina Basilar da Corioide , Degeneração Macular , Camundongos , Animais , Lâmina Basilar da Corioide/patologia , Elastina/metabolismo , Imunização , Degeneração Macular/metabolismo , Imunoglobulina M , Imunoglobulina G
2.
Front Immunol ; 13: 896274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784301

RESUMO

Background: Age-related macular degeneration (AMD), the leading cause of irreversible blindness in elderly Caucasian populations, includes destruction of the blood-retina barrier (BRB) generated by the retinal pigment epithelium-Bruch's membrane complex (RPE/BrM), and complement activation. Thrombin is likely to get access to those structures upon BRB integrity loss. Here we investigate the potential role of thrombin in AMD by analyzing effects of the thrombin inhibitor dabigatran. Material and Methods: MarketScan data for patients aged ≥65 years on Medicare was used to identify association between AMD and dabigatran use. ARPE-19 cells grown as mature monolayers were analyzed for thrombin effects on barrier function (transepithelial resistance; TER) and downstream signaling (complement activation, expression of connective tissue growth factor (CTGF), and secretion of vascular endothelial growth factor (VEGF)). Laser-induced choroidal neovascularization (CNV) in mouse is used to test the identified downstream signaling. Results: Risk of new wet AMD diagnosis was reduced in dabigatran users. In RPE monolayers, thrombin reduced TER, generated unique complement C3 and C5 cleavage products, led to C3d/MAC deposition on cell surfaces, and increased CTGF expression via PAR1-receptor activation and VEGF secretion. CNV lesion repair was accelerated by dabigatran, and molecular readouts suggest that downstream effects of thrombin include CTGF and VEGF, but not the complement system. Conclusions: This study provides evidence of association between dabigatran use and reduced exudative AMD diagnosis. Based on the cell- and animal-based studies, we suggest that thrombin modulates wound healing and CTGF and VEGF expression, making dabigatran a potential novel treatment option in AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Animais , Neovascularização de Coroide/tratamento farmacológico , Dabigatrana/farmacologia , Dabigatrana/uso terapêutico , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Medicare , Camundongos , Pigmentos da Retina , Trombina , Estados Unidos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/tratamento farmacológico
3.
Exp Eye Res ; 212: 108755, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487725

RESUMO

PURPOSE: Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS: C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS: Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS: These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.


Assuntos
Fumar Cigarros/efeitos adversos , Elastina/imunologia , Imunoterapia/métodos , Degeneração Macular/terapia , Peptídeos/uso terapêutico , Receptores de IgG/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Ativação do Complemento , Modelos Animais de Doenças , Elastina/metabolismo , Degeneração Macular/induzido quimicamente , Degeneração Macular/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Peptídeos/imunologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura
4.
Invest Ophthalmol Vis Sci ; 62(4): 11, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830174

RESUMO

Purpose: The risk for age-related macular degeneration has been tied to an overactive complement system. Despite combined attempts by academia and industry to develop therapeutics that modulate the complement response, particularly in the late geographic atrophy form of advanced AMD, to date, there is no effective treatment. We have previously demonstrated that pathology in the smoke-induced ocular pathology (SIOP) model, a model with similarities to dry AMD, is dependent on activation of the alternative complement pathway and that a novel complement activation site targeted inhibitor of the alternative pathway can be delivered to ocular tissues via an adeno-associated virus (AAV). Methods: Two different viral vectors for specific tissue targeting were compared: AAV5-VMD2-CR2-fH for delivery to the retinal pigment epithelium (RPE) and AAV2YF-smCBA-CR2-fH for delivery to retinal ganglion cells (RGCs). Efficacy was tested in SIOP (6 months of passive smoke inhalation), assessing visual function (optokinetic responses), retinal structure (optical coherence tomography), and integrity of the RPE and Bruch's membrane (electron microscopy). Protein chemistry was used to assess complement activation, CR2-fH tissue distribution, and CR2-fH transport across the RPE. Results: RPE- but not RGC-mediated secretion of CR2-fH was found to reduce SIOP and complement activation in RPE/choroid. Bioavailability of CR2-fH in RPE/choroid could be confirmed only after AAV5-VMD2-CR2-fH treatment, and inefficient, adenosine triphosphate-dependent transport of CR2-fH across the RPE was identified. Conclusions: Our results suggest that complement inhibition for AMD-like pathology is required basal to the RPE and argues in favor of AAV vector delivery to the RPE or outside the blood-retina barrier.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/administração & dosagem , Degeneração Macular/tratamento farmacológico , Epitélio Pigmentado da Retina/patologia , Animais , Corioide , Modelos Animais de Doenças , Injeções Intravítreas , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
5.
J Mol Med (Berl) ; 95(5): 535-552, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132078

RESUMO

A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. KEY MESSAGE: The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.


Assuntos
Conexina 43/química , Peptídeos/química , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Epitélio Pigmentado da Retina/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA