Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 6(61)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330813

RESUMO

Human γδ T cells contribute to tissue homeostasis and participate in epithelial stress surveillance through mechanisms that are not well understood. Here, we identified ephrin type-A receptor 2 (EphA2) as a stress antigen recognized by a human Vγ9Vδ1 TCR. EphA2 is recognized coordinately by ephrin A to enable γδ TCR activation. We identified a putative TCR binding site on the ligand-binding domain of EphA2 that was distinct from the ephrin A binding site. Expression of EphA2 was up-regulated upon AMP-activated protein kinase (AMPK)-dependent metabolic reprogramming of cancer cells, and coexpression of EphA2 and active AMPK in tumors was associated with higher CD3 T cell infiltration in human colorectal cancer tissue. These results highlight the potential of the human γδ TCR to cooperate with a co-receptor to recognize non-MHC-encoded proteins as signals of cellular dysregulation, potentially allowing γδ T cells to sense metabolic energy changes associated with either viral infection or cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Antígenos/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias/imunologia , Receptor EphA2/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética
2.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393495

RESUMO

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/enzimologia , Subunidade alfa da Proteína Mitocondrial Trifuncional , Proteínas de Neoplasias , Trimetazidina/farmacologia , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Subunidade alfa da Proteína Mitocondrial Trifuncional/antagonistas & inibidores , Subunidade alfa da Proteína Mitocondrial Trifuncional/biossíntese , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Oxirredução
3.
Cell Rep ; 23(12): 3621-3634, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925003

RESUMO

Although growing evidence indicates that bioenergetic metabolism plays an important role in the progression of tumorigenesis, little information is available on the contribution of reprogramming of energy metabolism in cancer initiation. By applying a quantitative proteomic approach and targeted metabolomics, we find that specific metabolic modifications precede primary skin tumor formation. Using a multistage model of ultraviolet B (UVB) radiation-induced skin cancer, we show that glycolysis, tricarboxylic acid (TCA) cycle, and fatty acid ß-oxidation are decreased at a very early stage of photocarcinogenesis, while the distal part of the electron transport chain (ETC) is upregulated. Reductive glutamine metabolism and the activity of dihydroorotate dehydrogenase (DHODH) are both necessary for maintaining high ETC. Mice with decreased DHODH activity or impaired ETC failed to develop pre-malignant and malignant lesions. DHODH activity represents a major link between DNA repair efficiency and bioenergetic patterning during skin carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Raios Ultravioleta , Animais , Proteínas de Ligação a DNA/metabolismo , Di-Hidro-Orotato Desidrogenase , Regulação para Baixo/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Epiderme/patologia , Epiderme/efeitos da radiação , Glutamina/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Redes e Vias Metabólicas , Camundongos , Camundongos Pelados , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fenótipo , Regulação para Cima/efeitos da radiação
4.
Redox Biol ; 18: 33-42, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935387

RESUMO

Anti-cancer effects of local anesthetics have been reported but the mode of action remains elusive. Here, we examined the bioenergetic and REDOX impact of levobupivacaine on human prostate cancer cells (DU145) and corresponding non-cancer primary human prostate cells (BHP). Levobupivacaine induced a combined inhibition of glycolysis and oxidative phosphorylation in cancer cells, resulting in a reduced cellular ATP production and consecutive bioenergetic crisis, along with reactive oxygen species generation. The dose-dependent inhibition of respiratory chain complex I activity by levobupivacaine explained the alteration of mitochondrial energy fluxes. Furthermore, the potency of levobupivacaine varied with glucose and oxygen availability as well as the cellular energy demand, in accordance with a bioenergetic anti-cancer mechanism. The levobupivacaine-induced bioenergetic crisis triggered cytostasis in prostate cancer cells as evidenced by a S-phase cell cycle arrest, without apoptosis induction. In DU145 cells, levobupivacaine also triggered the induction of autophagy and blockade of this process potentialized the anti-cancer effect of the local anesthetic. Therefore, our findings provide a better characterization of the REDOX mechanisms underpinning the anti-effect of levobupivacaine against human prostate cancer cells.


Assuntos
Anestésicos Locais/farmacologia , Antineoplásicos/farmacologia , Bupivacaína/análogos & derivados , Glicólise/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Bupivacaína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Levobupivacaína , Masculino , Oxirredução/efeitos dos fármacos , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Biochem J ; 473(6): 703-15, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26699902

RESUMO

Tumours display different cell populations with distinct metabolic phenotypes. Thus, subpopulations can adjust to different environments, particularly with regard to oxygen and nutrient availability. Our results indicate that progression to metastasis requires mitochondrial function. Our research, centered on cell lines that display increasing degrees of malignancy, focused on metabolic events, especially those involving mitochondria, which could reveal which stages are mechanistically associated with metastasis. Melanocytes were subjected to several cycles of adhesion impairment, producing stable cell lines exhibiting phenotypes representing a progression from non-tumorigenic to metastatic cells. Metastatic cells (4C11+) released the highest amounts of lactate, part of which was derived from glutamine catabolism. The 4C11+ cells also displayed an increased oxidative metabolism, accompanied by enhanced rates of oxygen consumption coupled to ATP synthesis. Enhanced mitochondrial function could not be explained by an increase in mitochondrial content or mitochondrial biogenesis. Furthermore, 4C11+ cells had a higher ATP content, and increased succinate oxidation (complex II activity) and fatty acid oxidation. In addition, 4C11+ cells exhibited a 2-fold increase in mitochondrial membrane potential (ΔΨmit). Consistently, functional assays showed that the migration of cells depended on glutaminase activity. Metabolomic analysis revealed that 4C11+ cells could be grouped as a subpopulation with a profile that was quite distinct from the other cells investigated in the present study. The results presented here have centred on how the multiple metabolic inputs of tumour cells may converge to compose the so-called metastatic phenotype.


Assuntos
Glutamina/metabolismo , Melanócitos/fisiologia , Melanoma/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Glucose/metabolismo , Glutaminase/metabolismo , Glutamina/genética , Lactatos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Potenciais da Membrana/fisiologia , Metabolismo , Camundongos , Oxirredução , Fenótipo
6.
Int J Biochem Cell Biol ; 59: 167-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542180

RESUMO

The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators.


Assuntos
Pesquisa Biomédica , Metabolismo Energético , Neoplasias/metabolismo , Neoplasias/terapia , Transdução de Sinais , Simbiose , Animais , Humanos , Modelos Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA