Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536085

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.


Assuntos
MAP Quinase Quinase Quinase 5 , Tiorredoxinas , Microscopia Crioeletrônica , Apoptose , Biofísica
2.
Front Mol Biosci ; 11: 1327014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328397

RESUMO

Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.

3.
Protein Sci ; 32(11): e4805, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817008

RESUMO

Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.


Assuntos
Proteínas 14-3-3 , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Proteínas 14-3-3/metabolismo , Domínio Catalítico , Espalhamento a Baixo Ângulo , Difração de Raios X , Fosforilação , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
4.
J Biol Chem ; 299(7): 104855, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224961

RESUMO

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Assuntos
Proteínas 14-3-3 , Receptor alfa de Estrogênio , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ligantes , Tamoxifeno/farmacologia , Ligação Proteica/efeitos dos fármacos , Descoberta de Drogas , Antagonistas de Estrogênios/farmacologia
5.
ACS Omega ; 7(38): 34632-34646, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188303

RESUMO

Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.

6.
Protein Sci ; 31(5): e4287, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481640

RESUMO

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.


Assuntos
Fatores de Transcrição Forkhead , Proteína Supressora de Tumor p53 , Proteínas de Ciclo Celular/metabolismo , DNA/química , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948191

RESUMO

Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer's, Parkinson's and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.


Assuntos
MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/ultraestrutura , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Oxirredução , Estresse Oxidativo , Fosforilação , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Commun Biol ; 4(1): 899, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294877

RESUMO

Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer.


Assuntos
Proteínas 14-3-3/genética , Camundongos/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Domínios WW , Proteínas 14-3-3/metabolismo , Animais , Regulação para Baixo , Camundongos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Fosforilação , Ligação Proteica , Ubiquitinação
9.
FEBS J ; 288(6): 1918-1934, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979285

RESUMO

Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.


Assuntos
Proteínas 14-3-3/metabolismo , Doença de Alzheimer/metabolismo , Multimerização Proteica , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sítios de Ligação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Serina/química , Serina/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas tau/química , Proteínas tau/genética
10.
ACS Chem Biol ; 15(11): 3060-3071, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33146997

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.


Assuntos
Proteínas 14-3-3/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Glicosídeos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas 14-3-3/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Cristalografia por Raios X , Glicosídeos/química , Humanos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
11.
ACS Omega ; 5(10): 5380-5388, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201828

RESUMO

Inflammatory responses mediated by the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) play key roles in immunity, autoimmune diseases, and cancer. NF-κB is directly regulated through protein-protein interactions, including those with IκB and 14-3-3 proteins. These two important regulatory proteins have been reported to interact with each other, although little is known about this interaction. We analyzed the inhibitor of nuclear factor kappa B α (IκBα)/14-3-3σ interaction via a peptide/protein-based approach. Structural data were acquired via X-ray crystallography, while binding affinities were measured with fluorescence polarization assays and time-resolved tryptophan fluorescence. A high-resolution crystal structure (1.13 Å) of the uncommon 14-3-3 interaction motif of IκBα (IκBαpS63) in a complex with 14-3-3σ was evaluated. This motif harbors a tryptophan that makes this crystal structure the first one with such a residue visible in the electron density at that position. We used this tryptophan to determine the binding affinity of the unlabeled IκBα peptide to 14-3-3 via tryptophan fluorescence decay measurements.

12.
FEBS J ; 287(8): 1626-1644, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31623019

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase 5, which mediates various stress signals including oxidative stress. The catalytic activity of ASK1 is tightly controlled by oligomerization and binding of several cofactors. Among these cofactors, thioredoxin stands out as the most important ASK1 inhibitor, but only the reduced form of thioredoxin inhibits ASK1 by direct binding to its N-terminal domain. In addition, oxidation-driven thioredoxin dissociation is the key event in oxidative stress-mediated ASK1 activation. However, the structural mechanism of ASK1 regulation by thioredoxin remains unknown. Here, we report the characterization of the ASK1 domain responsible for thioredoxin binding and its complex using NMR spectroscopy and chemical cross-linking, thus providing the molecular basis for ASK1: thioredoxin complex dissociation under oxidative stress conditions. Our data reveal that the N-terminal domain of ASK1 adopts a fold resembling the thioredoxin structure while retaining substantial conformational plasticity at the thioredoxin-binding interface. Although oxidative stress induces relatively moderate structural changes in thioredoxin, the formation of intramolecular disulfide bridges leads to a considerable conformational rearrangement of the thioredoxin-binding interface on ASK1. Moreover, the cysteine residue at position 250 of ASK1 is the key element of this molecular switch. Finally, our results show that the redox-active site of thioredoxin is directly involved in ASK1 binding that is modulated by oxidative stress, thereby identifying a key target for the structure-based drug design.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Sítios de Ligação , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Inibidores de Proteínas Quinases/farmacologia
13.
Elife ; 82019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31789593

RESUMO

FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modeling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.


Assuntos
DNA/genética , Proteína Forkhead Box O3/genética , Regiões Promotoras Genéticas/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Sítios de Ligação/genética , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/metabolismo , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
14.
Cells ; 8(9)2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450545

RESUMO

FOXO transcription factors regulate cellular homeostasis, longevity and response to stress. FOXO1 (also known as FKHR) is a key regulator of hepatic glucose production and lipid metabolism, and its specific inhibition may have beneficial effects on diabetic hyperglycemia by reducing hepatic glucose production. Moreover, all FOXO proteins are considered potential drug targets for drug resistance prevention in cancer therapy. However, the development of specific FOXO inhibitors requires a detailed understanding of structural differences between individual FOXO DNA-binding domains. The high-resolution structure of the DNA-binding domain of FOXO1 reported in this study and its comparison with structures of other FOXO proteins revealed differences in both their conformation and flexibility. These differences are encoded by variations in protein sequences and account for the distinct functions of FOXO proteins. In particular, the positions of the helices H1, H2 and H3, whose interface form the hydrophobic core of the Forkhead domain, and the interactions between hydrophobic residues located on the interface between the N-terminal segment, the H2-H3 loop, and the recognition helix H3 differ among apo FOXO1, FOXO3 and FOXO4 proteins. Therefore, the availability of apo structures of DNA-binding domains of all three major FOXO proteins will support the development of FOXO-type-specific inhibitors.


Assuntos
Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Animais , Proteína Forkhead Box O1/química , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Análise de Sequência de Proteína
15.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118534, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446061

RESUMO

Na+/H+ antiporters are involved in ensuring optimal intracellular concentrations of alkali-metal cations and protons in most organisms. In Saccharomyces cerevisiae, the plasma-membrane Na+, K+/H+ antiporter Nha1 mediates Na+ and K+ efflux, which is important for cell growth in the presence of salts. Nha1 belongs among housekeeping proteins and, due to its ability to export K+, it has many physiological functions. The Nha1 transport activity is regulated through its long, hydrophilic and unstructured C-terminus (554 of 985 aa). Although Nha1 has been previously shown to interact with the yeast 14-3-3 isoform (Bmh2), the binding site remains unknown. In this work, we identified the residues through which Nha1 interacts with the 14-3-3 protein. Biophysical characterization of the interaction between the C-terminal polypeptide of Nha1 and Bmh proteins in vitro revealed that the 14-3-3 protein binds to phosphorylated Ser481 of Nha1, and the crystal structure of the phosphopeptide containing Ser481 bound to Bmh1 provided the structural basis of this interaction. Our data indicate that 14-3-3 binding induces a disorder-to-order transition of the C-terminus of Nha1, and in vivo experiments showed that the mutation of Ser481 to Ala significantly increases cation efflux activity via Nha1, which renders cells sensitive to low K+ concentrations. Hence, 14-3-3 binding is apparently essential for the negative regulation of Nha1 activity, which should be low under standard growth conditions, when low amounts of toxic salts are present and yeast cells need to accumulate high amounts of K+.


Assuntos
Proteínas 14-3-3/metabolismo , Saccharomyces cerevisiae/química , Serina/metabolismo , Sítios de Ligação , Proliferação de Células , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
FEBS J ; 285(22): 4196-4213, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30281929

RESUMO

Caspase-2 is an apical protease responsible for the proteolysis of cellular substrates directly involved in mediating apoptotic signaling cascades. Caspase-2 activation is inhibited by phosphorylation followed by binding to the scaffolding protein 14-3-3, which recognizes two phosphoserines located in the linker between the caspase recruitment domain and the p19 domains of the caspase-2 zymogen. However, the structural details of this interaction and the exact role of 14-3-3 in the regulation of caspase-2 activation remain unclear. Moreover, the caspase-2 region with both 14-3-3-binding motifs also contains the nuclear localization sequence (NLS), thus suggesting that 14-3-3 binding may regulate the subcellular localization of caspase-2. Here, we report a structural analysis of the 14-3-3ζ:caspase-2 complex using a combined approach based on small angle X-ray scattering, NMR, chemical cross-linking, and fluorescence spectroscopy. The structural model proposed in this study suggests that phosphorylated caspase-2 and 14-3-3ζ form a compact and rigid complex in which the p19 and the p12 domains of caspase-2 are positioned within the central channel of the 14-3-3 dimer and stabilized through interactions with the C-terminal helices of both 14-3-3ζ protomers. In this conformation, the surface of the p12 domain, which is involved in caspase-2 activation by dimerization, is sterically occluded by the 14-3-3 dimer, thereby likely preventing caspase-2 activation. In addition, 14-3-3 protein binding to caspase-2 masks its NLS. Therefore, our results suggest that 14-3-3 protein binding to caspase-2 may play a key role in regulating caspase-2 activation. DATABASE: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.ww pdb.org (PDB ID codes 6GKF and 6GKG).


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Caspase 2/química , Caspase 2/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Sinais de Localização Nuclear , Sítios de Ligação , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo
17.
Biochim Biophys Acta Gen Subj ; 1862(7): 1612-1625, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29649512

RESUMO

BACKGROUND: Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/calmodulin-dependent kinase (CaMK) family involved in adiposity regulation, glucose homeostasis and cancer. This upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase is inhibited by phosphorylation, which also triggers an association with the scaffolding protein 14-3-3. However, the role of 14-3-3 in the regulation of CaMKK2 remains unknown. METHODS: The interaction between phosphorylated CaMKK2 and the 14-3-3γ protein, as well as the architecture of their complex, were studied using enzyme activity measurements, small-angle x-ray scattering (SAXS), time-resolved fluorescence spectroscopy and protein crystallography. RESULTS: Our data suggest that the 14-3-3 protein binding does not inhibit the catalytic activity of phosphorylated CaMKK2 but rather slows down its dephosphorylation. Structural analysis indicated that the complex is flexible and that CaMKK2 is located outside the phosphopeptide-binding central channel of the 14-3-3γ dimer. Furthermore, 14-3-3γ appears to interact with and affect the structure of several regions of CaMKK2 outside the 14-3-3 binding motifs. In addition, the structural basis of interactions between 14-3-3 and the 14-3-3 binding motifs of CaMKK2 were elucidated by determining the crystal structures of phosphopeptides containing these motifs bound to 14-3-3. CONCLUSIONS: 14-3-3γ protein directly interacts with the kinase domain of CaMKK2 and the region containing the inhibitory phosphorylation site Thr145 within the N-terminal extension. GENERAL SIGNIFICANCE: Our results suggested that CaMKK isoforms differ in their 14-3-3-mediated regulations and that the interaction between 14-3-3 protein and the N-terminal 14-3-3-binding motif of CaMKK2 might be stabilized by small-molecule compounds.


Assuntos
Proteínas 14-3-3/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Motivos de Aminoácidos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
18.
FEBS J ; 283(20): 3821-3838, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588831

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1, MAP3K5) activates p38 mitogen-activated protein kinase and the c-Jun N-terminal kinase in response to proinflammatory and stress signals. In nonstress conditions, ASK1 is inhibited by association with thioredoxin (TRX) which binds to the TRX-binding domain (ASK1-TBD) at the N terminus of ASK1. TRX dissociates in response to oxidative stress allowing the ASK1 activation. However, the molecular basis for the ASK1:TRX1 complex dissociation is still not fully understood. Here, the role of cysteine residues on the interaction between TRX1 and ASK1-TBD in both reducing and oxidizing conditions was investigated. We show that from the two catalytic cysteines of TRX1 the residue C32 is responsible for the high-affinity binding of TRX1 to ASK1-TBD in reducing conditions. The disulfide bond formation between C32 and C35 within the active site of TRX1 is the main factor responsible for the TRX1 dissociation upon its oxidation as the formation of the second disulfide bond between noncatalytic cysteines C62 and C69 did not have any additional effect. ASK1-TBD contains seven conserved cysteine residues which differ in solvent accessibility with the residue C250 being the only cysteine which is both solvent exposed and essential for TRX1 binding in reducing conditions. Furthermore, our data show that the catalytic site of TRX1 interacts with ASK1-TBD region containing cysteine C200 and that the oxidative stress induces intramolecular disulfide bond formation within ASK1-TBD and affects its structure in regions directly involved and/or important for TRX1 binding.


Assuntos
MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Cisteína/química , Humanos , Cinética , MAP Quinase Quinase Quinase 5/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética
19.
J Biol Chem ; 291(39): 20753-65, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27514745

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.


Assuntos
Proteínas 14-3-3/química , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Domínio Catalítico , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Cancer Res ; 71(3): 946-54, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245099

RESUMO

The proapoptotic protein Noxa, a member of the BH3-only Bcl-2 protein family, can effectively induce apoptosis in cancer cells, although the relevant regulatory pathways have been obscure. Previous studies of the cytotoxic effects of α-tocopheryl succinate (α-TOS) on cancer cells identified a mechanism whereby α-TOS caused apoptosis requiring the Noxa-Bak axis. In the present study, ab initio analysis revealed a conserved FoxO-binding site (DBE; DAF-16 binding element) in the NOXA promoter, and specific affinity of FoxO proteins to this DBE was confirmed by fluorescence anisotropy. FoxO1 and FoxO3a proteins accumulated in the nucleus of α-TOS-treated cells, and the drug-induced specific FoxO1 association with the NOXA promoter and its activation were validated by chromatin immunoprecipitation. Using siRNA knockdown, a specific role for the FoxO1 protein in activating NOXA transcription in cancer cells was identified. Furthermore, the proapoptotic kinase Hippo/Mst1 was found to be strongly activated by α-TOS, and inhibiting Hippo/Mst1 by specific siRNA prevented phosphorylation of FoxO1 and its nuclear translocation, thereby reducing levels of NOXA transcription and apoptosis in cancer cells exposed to α-TOS. Thus, we have demonstrated that anticancer drugs, exemplified by α-TOS, induce apoptosis by a mechanism involving the Hippo/Mst1-FoxO1-Noxa pathway. We propose that activation of this pathway provides a new paradigm for developing targeted cancer treatments.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , alfa-Tocoferol/farmacologia , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Linfoma de Células T/terapia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA