Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 77(13): 2579-2603, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31562565

RESUMO

Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.


Assuntos
Ebolavirus/genética , Ebolavirus/metabolismo , Regulação Viral da Expressão Gênica , Nucleoproteínas/metabolismo , Transcrição Gênica , Proteínas do Core Viral/metabolismo , Animais , Quirópteros , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo , Nucleoproteínas/química , Fosforilação , Proteômica , Ribonucleoproteínas/metabolismo , Células Vero , Proteínas do Core Viral/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
2.
Virology ; 497: 11-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414250

RESUMO

The post-entry events of HIV-1 infection occur within reverse transcription complexes derived from the viral cores entering the target cell. HIV-1 cores contain host proteins incorporated from virus-producing cells. In this report, we show that MCM5, a subunit of the hexameric minichromosome maintenance (MCM) DNA helicase complex, associates with Gag polyprotein and is incorporated into HIV-1 virions. The progeny virions depleted of MCM5 demonstrated reduced reverse transcription in newly infected cells, but integration and subsequent replication steps were not affected. Interestingly, increased packaging of MCM5 into the virions also led to reduced reverse transcription, but here viral replication was impaired. Our data suggest that incorporation of physiological amounts of MCM5 promotes aberrant reverse transcription, leading to partial incapacitation of cDNA, whereas increased MCM5 abundance leads to reduced reverse transcription and infection. Therefore, MCM5 has the properties of an inhibitory factor that interferes with production of an integration-competent cDNA product.


Assuntos
Proteínas de Ciclo Celular/metabolismo , HIV-1/fisiologia , Vírion , Replicação Viral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
3.
Retrovirology ; 9: 65, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22889230

RESUMO

BACKGROUND: Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. RESULTS: We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. CONCLUSIONS: Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.


Assuntos
HIV-1/patogenicidade , Proteínas/metabolismo , Proteoma/análise , RNA Viral/metabolismo , Vírion/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Mapeamento de Interação de Proteínas , Proteínas/genética , Proteínas/isolamento & purificação , Proteômica/métodos , RNA Viral/genética , Transcrição Reversa , Transfecção , Vírion/genética , Montagem de Vírus , Integração Viral , Liberação de Vírus
4.
PLoS One ; 7(6): e39481, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768081

RESUMO

HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q(35)VCF(38), which resembles the PP1-binding "RVxF" motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the "RVxF"-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the "RVxF"-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners.


Assuntos
Fármacos Anti-HIV/farmacologia , Biocatálise/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/química , Bibliotecas de Moléculas Pequenas/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Sítios de Ligação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA