Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475524

RESUMO

Seseli tortuosum L. subsp. tortuosum, belonging to the Apiaceae family, is a species that grows in Europe, mainly in the Mediterranean regions. The history of its application in traditional medicine highlights its various biological properties. Trying to explore the phytochemistry and pharmacological aspects of this species, the essential oils (EOs) extracted from flowers, stems, and roots of a locally wild accession, never previously investigated, growing in Sicily, Italy, were investigated. The chemical composition of all EOs, obtained by the hydrodistillation method, was evaluated by GC-MS. The most abundant class of all investigated samples was that of monoterpene hydrocarbons (79.98-91.21%) with p-cymene, α-pinene, ß-pinene, and ß-ocimene as major compounds. These EOs, and their main components, were tested for their possible anticancer activity. Obtained data provided evidence that among the different EOs tested, at the dose of 100 µg/mL, those extracted from stems and roots were particularly effective, already at 24 h of treatment, in reducing the cell viability of 42% and 95%, respectively, in HCT116 colon cancer cell line. These EOs also exerted a remarkable cytotoxic effect that was accompanied by morphological changes represented by cell shrinkage as well as a reduction in residual cell population. Differently, modest effects were found when EOs extracted from flowers were tested in the same experimental conditions. The evaluation of the phytocompounds mainly represented in the EOs extracted from different parts of the plant and tested in a range of concentrations between 20 and 200 µg/mL, revealed that α-pinene, ß-pinene, and p-cymene exerted only modest effects on cell viability. Differently, a remarkable effect was found when ß-ocimene, the most abundant phytocomponent in EOs from roots, was tested on colon cancer cells. This phytocompound, among those identified in EOs from Seseli tortuosum L. subsp. tortuosum, was found to be the most effective in reducing colon cancer cell viability with IC50 = 64.52 µg/mL at 24 h of treatment. All together, these data suggest that ß-ocimene could be responsible for the effects observed in colon cancer cells.

2.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807446

RESUMO

It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most abundant compound is a hydroxy-methyl-naphthoquinone isomer. Important pharmacological activities, such as antitumor, antibacterial, antifungal, antiviral and antiparasitic activities, are attributed to naphthoquinones, probably due to their pro-oxidant or electrophilic potential; for some naphthoquinones, a mechanism of action of topoisomerase inhibition has been reported, in which they appear to act both as catalytic inhibitors and as topoisomerase II poisons. Our aim was to evaluate the cytotoxic activity of the essential oil on an acute myeloid leukemia cell line HL-60 and on its multidrug-resistant (MDR) variant HL-60R and verify its ability to interfere with topoisomerase II activity. MTS assay showed that G. rosmarinifolia EO induced a decrease in tumor cell viability equivalent in the two cell lines; this antitumor effect could depend on the pro-oxidant activity of EO in both cell lines. Furthermore, G. rosmarinifolia EO reduced the activity of Topo II in the nuclear extracts of HL-60 and HL-60R cells, as inferred from the inability to convert the kinetoplast DNA into the decatenated form and then not inducing linear kDNA. Confirming this result, flow cytometric analysis proved that EO induced a G0-G1 phase arrest, with cell reduction in the S-phase. In addition, the combination of EO with etoposide showed a good potentiation effect in terms of cytotoxicity in both cell lines. Our results highlight the antitumor activity of EO in the HL-60 cell line and its MDR variant with a peculiar mechanism as a Topo II modulator. Unlike etoposide, EO does not cause stabilization of a covalent Topo II-DNA intermediate but acts as a catalytic inhibitor. These data make G. rosmarinifolia EO a potential anticancer drug candidate due to its cytotoxic action, which is not affected by multidrug resistance.


Assuntos
Antineoplásicos , Boraginaceae , Carcinoma Hepatocelular , Leucemia Mieloide Aguda , Neoplasias Hepáticas , Naftoquinonas , Óleos Voláteis , Antineoplásicos/farmacologia , Boraginaceae/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/farmacologia , Óleos Voláteis/farmacologia , Espécies Reativas de Oxigênio , Inibidores da Topoisomerase II/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA