Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(5): 339-350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38207121

RESUMO

In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers extensively used commercially available and easily expandable A549 and NCI-H441 cells, which replicate some but not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpCs) have become commercially available but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per square centimeter and growth at a gas-liquid interface, hPAEpCs formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single-cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers; yet, transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpCs transdifferentiated toward alveolar-basal intermediates characterized as SFTPC-, KRT8high, and KRT5- cells. In spite of marked changes in the transcriptome as a function of passaging, Uniform Manifold Approximation and Projection plots did not reveal major shifts in cell clusters, and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics, and functional properties of commercially available hPAEpCs. hPAEpCs may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.


Assuntos
Células Epiteliais Alveolares , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/ultraestrutura , Diferenciação Celular , Transcriptoma , Células Cultivadas , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Junções Íntimas/metabolismo
2.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386200

RESUMO

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Assuntos
Glicocálix , Dióxido de Tório , Camundongos , Humanos , Animais , Heparina Liase , Elétrons , Glicosaminoglicanos
3.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522531

RESUMO

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão , Camundongos , Organoides/metabolismo
4.
Reprod Sci ; 29(4): 1136-1144, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34766259

RESUMO

In placenta percreta cases, large vessels are present on the precrete surface area. As these vessels are not found in normal placentation, we examined their histological structure for features that might explain the pathogenesis of neoangiogenesis induced by placenta accreta spectrum disorders (PAS). In two patients with placenta percreta (FIGO grade 3a) of the anterior uterine wall, one strikingly large vessel of 2 cm length was excised. The samples were formalin fixed and paraffin-embedded. Gomori trichrome staining was used to evaluate the muscular layers and Weigert-Van Gieson staining for elastic fibers. Immunohistochemical staining of the vessel endothelium was performed for Von Willebrand factor (VWF), platelet endothelial cell adhesion molecule (CD31), Ephrin B2, and EPH receptor B4. The structure of the vessel walls appeared artery-like. The vessel of patient one further exhibited an unorderly muscular layer and a lack of elastic laminae, whereas these features appeared normal in the vessel of the other patient. The endothelium of both vessels stained VWF-negative and CD31-positive. In conclusion, this study showed VWF-negative vessel endothelia of epiplacental arteries in placenta accreta spectrum. VWF is known to regulate artery formation, as the absence of VWF has been shown to cause enhanced vascularization. Therefore, we suppose that PAS provokes increased vascularization through suppression of VWF. This process might be associated with the immature vessel architecture as found in one of the vessels and Ephrin B2 and EPH receptor B4 negativity of both artery-like vessels. The underlying pathomechanism needs to be evaluated in a greater set of patients.


Assuntos
Placenta Acreta , Fator de von Willebrand , Artérias , Endotélio Vascular/metabolismo , Efrina-B2/metabolismo , Feminino , Humanos , Neovascularização Patológica/metabolismo , Placenta Acreta/metabolismo , Gravidez , Receptor EphB4 , Fator de von Willebrand/metabolismo
5.
Front Immunol ; 13: 958098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618426

RESUMO

Background: The activation of NLRP3 inflammasome in macrophages has been proven to play a crucial role in the development of cardiovascular diseases. THP-1 monocytes can be differentiated to macrophages by incubation with phorbol-12-myristate 13-acetate (PMA), providing a suitable model for in vitro studies. However, PMA has been shown to have effects on the levels of IL-1ß, the main mediator of NLRP3 inflammasome, while the effects on the other mediators of the inflammasome have not been reported before. Methods: THP-1 monocytes were incubated without (THP-1), with 5ng/ml PMA for 48h (PMA48h) or with 5ng/ml PMA for 48h plus 24h in fresh medium (PMArest). Morphological changes and the expression of macrophage surface markers (CD14, CD11b, CD36 and CD204) were evaluated by flow cytometry. Changes in intracellular levels of inflammasome components (NLRP3, ASC, pro-caspase-1, pro-IL1ß) were analyzed by western blot and release of mature IL-1ß in cell supernatant was analyzed by ELISA. ASC speck formation was determined by immunofluorescence. Results: After 48h incubation with PMA or subsequent rest in fresh medium, cells became adherent, and the differential expression of CD36, CD11b, CD14 and CD204 compared to THP-1 cells confirmed that PMArest resemble macrophages from a molecular point of view. Changes in the levels were detected in PMA48h group for all the NLRP3-related proteins, with increase of NLRP3 and pro-IL-1ß and secretion of mature IL-1ß. In PMArest, no pro-IL-1ß and lower amounts of mature IL-1ß were detected. No ASC speck was found in PMA treated groups, but the addition of a second stimulus to PMArest resulted in ASC speck formation, together with IL-1ß production, confirming the responsiveness of the model. Conclusion: Differentiation of THP-1 with 5ng/ml PMA followed by 24h resting period provides a model that morphologically and molecularly resembles macrophages. However, even at low concentrations, PMA induces production of IL-1ß. The 24h rest period provides for down-regulation of pro-IL-1ß in PMArest group, without affecting its ability to respond to a second stimulus through activation of inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Miristatos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Macrófagos/metabolismo , Acetatos/metabolismo
6.
Oxid Med Cell Longev ; 2021: 4293279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659632

RESUMO

Bronchopulmonary dysplasia (BPD) is a complex condition frequently occurring in preterm newborns, and different animal models are currently used to mimic the pathophysiology of BPD. The comparability of animal models depends on the availability of quantitative data obtained by minimally biased methods. Therefore, the aim of this study was to provide the first design-based stereological analysis of the lungs in the hyperoxia-based model of BPD in the preterm rabbit. Rabbit pups were obtained on gestation day 28 (three days before term) by cesarean section and exposed to normoxic (21% O2, n = 8) or hyperoxic (95% O2, n = 8) conditions. After seven days of exposure, lung function testing was performed, and lungs were taken for stereological analysis. In addition, the ratio between pulmonary arterial acceleration and ejection time (PAAT/PAET) was measured. Inspiratory capacity and static compliance were reduced whereas tissue elastance and resistance were increased in hyperoxic animals compared with normoxic controls. Hyperoxic animals showed signs of pulmonary hypertension indicated by the decreased PAAT/PAET ratio. In hyperoxic animals, the number of alveoli and the alveolar surface area were reduced by one-third or by approximately 50% of control values, respectively. However, neither the mean linear intercept length nor the mean alveolar volume was significantly different between both groups. Hyperoxic pups had thickened alveolar septa and intra-alveolar accumulation of edema fluid and inflammatory cells. Nonparenchymal blood vessels had thickened walls, enlarged perivascular space, and smaller lumen in hyperoxic rabbits in comparison with normoxic ones. In conclusion, the findings are in line with the pathological features of human BPD. The stereological data may serve as a reference to compare this model with BPD models in other species or future therapeutic interventions.


Assuntos
Displasia Broncopulmonar/patologia , Hiperóxia/patologia , Pulmão/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Coelhos
7.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299227

RESUMO

Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood-gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Remodelação das Vias Aéreas/fisiologia , Células Epiteliais Alveolares/fisiologia , Animais , Células Epiteliais/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Surfactantes Pulmonares , Mucosa Respiratória/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132118

RESUMO

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células Epiteliais Alveolares , Autofagia , Regulação da Expressão Gênica , Lesão Pulmonar , Mutação de Sentido Incorreto , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Substituição de Aminoácidos , Animais , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Mutantes , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia
9.
PLoS Genet ; 17(6): e1009619, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161347

RESUMO

Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function.


Assuntos
Células Epiteliais Alveolares/metabolismo , Asma/genética , Homeostase/genética , Proteína 3 de Membrana Associada ao Lisossomo/genética , Proteína C Associada a Surfactante Pulmonar/genética , Surfactantes Pulmonares/metabolismo , Resistência das Vias Respiratórias , Células Epiteliais Alveolares/patologia , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Regulação da Expressão Gênica , Lipidômica , Pulmão/metabolismo , Pulmão/patologia , Proteína 3 de Membrana Associada ao Lisossomo/deficiência , Camundongos , Camundongos Knockout , Ovalbumina/administração & dosagem , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Testes de Função Respiratória , Transdução de Sinais
10.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L403-L407, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640838
11.
Nat Commun ; 11(1): 2012, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332792

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFß signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF.


Assuntos
Células Epiteliais/patologia , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Adulto , Idoso , Animais , Biópsia , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mucina-5B/metabolismo , Proteômica , Piridonas/administração & dosagem , Ubiquitinação
12.
Am J Respir Cell Mol Biol ; 62(4): 466-478, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31922895

RESUMO

Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of overdistended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Colesterol/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Proteína C/metabolismo , Surfactantes Pulmonares/metabolismo , Idoso , Animais , Enfisema/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/metabolismo
13.
Sci Rep ; 9(1): 7486, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097772

RESUMO

Certain point-mutations in the human SERPINA1-gene can cause severe α1-antitrypsin-deficiency (A1AT-D). Affected individuals can suffer from loss-of-function lung-disease and from gain-of-function liver-disease phenotypes. However, age of onset and severity of clinical appearance is heterogeneous amongst carriers, suggesting involvement of additional genetic and environmental factors. The generation of authentic A1AT-D mouse-models has been hampered by the complexity of the mouse Serpina1-gene locus and a model with concurrent lung and liver-disease is still missing. Here, we investigate point-mutations in the mouse Serpina1a antitrypsin-orthologue, which are homolog-equivalent to ones known to cause severe A1AT-D in human. We combine in silico and in vitro methods and we find that analyzed mutations do introduce potential disease-causing properties into Serpina1a. Finally, we show that introduction of the King's-mutation causes inactivation of neutrophil elastase inhibitory-function in both, mouse and human antitrypsin, while the mouse Z-mutant retains activity. This work paves the path to generation of better A1AT-D mouse-models.


Assuntos
Mutação com Perda de Função , Simulação de Dinâmica Molecular , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Domínios Proteicos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L109-L126, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042078

RESUMO

Bleomycin-induced lung injury and fibrosis is a well-described model to investigate lung inflammatory and remodeling mechanisms. Rat models are clinically relevant and are also widely used, but rat bronchoalveolar lavage (BAL) cells are not fully characterized with flow cytometry due to the limited availability of antibodies for this species. We optimized a comprehensive time-dependent flow cytometric analysis of cells after bleomycin challenge, confirming previous studies in other species and correlating them to histological staining, cytokine profiling, and collagen accumulation analysis in rat lungs. For this purpose, we describe a novel panel of rat surface markers and a strategy to identify and follow BAL cells over time. By combining surface markers in rat alveolar cells (CD45+), granulocytes and other myeloid cells, monocytes and macrophages can be identified by the expression of CD11b/c. Moreover, different activation states of macrophages (CD163+) can be observed: steady state (CD86-MHC-IIlow), activation during inflammation (CD86+,MHC-IIhigh), activation during remodeling (CD86+MHC-IIlow), and a population of newly recruited monocytes (CD163-α-granulocyte-). Hydroxyproline measured as marker of collagen content in lung tissue showed positive correlation with the reparative phase (CD163- cells and tissue inhibitor of metalloproteinases (TIMP) and IL-10 increase). In conclusion, after a very early granulocytic recruitment, inflammation in rat lungs is observed by activated macrophages, and high release of IL-6 and fibrotic remodeling is characterized by recovery of the macrophage population together with TIMP, IL-10, and IL-18 production. Recruited monocytes and a second peak of granulocytes appear in the transitioning phase, correlating with immunostaining of arginase-1 in the tissue, revealing the importance of events leading the changes from injury to aberrant repair.


Assuntos
Lesão Pulmonar Aguda/patologia , Granulócitos/patologia , Leucócitos Mononucleares/patologia , Pulmão/patologia , Macrófagos/patologia , Monócitos/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Arginase/genética , Arginase/imunologia , Biomarcadores/metabolismo , Bleomicina/administração & dosagem , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/genética , Colágeno/imunologia , Citometria de Fluxo , Expressão Gênica , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/imunologia
16.
Am J Respir Cell Mol Biol ; 59(6): 757-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095988

RESUMO

Lung injury results in intratidal alveolar recruitment and derecruitment and alveolar collapse, creating stress concentrators that increase strain and aggravate injury. In this work, we sought to describe alveolar micromechanics during mechanical ventilation in bleomycin-induced lung injury and surfactant replacement therapy. Structure and function were assessed in rats 1 day and 3 days after intratracheal bleomycin instillation and after surfactant replacement therapy. Pulmonary system mechanics were measured during ventilation with positive end-expiratory pressures (PEEPs) between 1 and 10 cm H2O, followed by perfusion fixation at end-expiratory pressure at airway opening (Pao) values of 1, 5, 10, and 20 cm H2O for quantitative analyses of lung structure. Lung structure and function were used to parameterize a physiologically based, multicompartment computational model of alveolar micromechanics. In healthy controls, the numbers of open alveoli remained stable in a range of Pao = 1-20 cm H2O, whereas bleomycin-challenged lungs demonstrated progressive alveolar derecruitment with Pao < 10 cm H2O. At Day 3, ∼40% of the alveoli remained closed at high Pao, and alveolar size heterogeneity increased. Simulations of injured lungs predicted that alveolar recruitment pressures were much greater than the derecruitment pressures, so that minimal intratidal recruitment and derecruitment occurred during mechanical ventilation with a tidal volume of 10 ml/kg body weight over a range of PEEPs. However, the simulations also predicted a dramatic increase in alveolar strain with injury that we attribute to alveolar interdependence. These findings suggest that in progressive lung injury, alveolar collapse with increased distension of patent (open) alveoli dominates alveolar micromechanics. PEEP and surfactant substitution reduce alveolar collapse and dynamic strain but increase static strain.


Assuntos
Bleomicina/toxicidade , Lesão Pulmonar/tratamento farmacológico , Respiração com Pressão Positiva/métodos , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Mecânica Respiratória , Animais , Antibióticos Antineoplásicos/toxicidade , Modelos Animais de Doenças , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Alvéolos Pulmonares/patologia , Ratos , Respiração Artificial , Testes de Função Respiratória
17.
Vasa ; 47(5): 409-416, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29808768

RESUMO

BACKGROUND: The aim of this study was to investigate the influence of age on the ultrastructure of venous valve morphology in patients with C2 classified chronic venous disorders according to the CEAP classification. PATIENTS AND METHODS: The study population consisted of 16 consecutive patients with varicose veins (C2). The mean age was 49.8 years (30-66). The (pre-) terminal valve including the vessel wall was harvested within the proximal 2 centimetres of the great saphenous vein. The mean thickness (volume-to-surface ratio = V/S ratio) of elastin, collagen, endothelium and of the entire valve was determined. A blinded morphologist performed the examination by transmission electron microscopy and stereology. Analyses by Pearson's product moment correlation, Kendall's tau and Spearman's rank correlation were performed to investigate whether there is a correlation between age and the ultrastructural morphology. RESULTS: Stereological analysis of the valves demonstrated a mean V/S ratio (signifying a thickness estimation) for elastin of 0.87 µm3/µm2, for collagen of 18.0 µm3/µm2, for endothelium of 0.65 µm3/µm2, and for the entire valve of 25.2 µm³/µm². Statistical analyses showed no statistically significant correlation between age and the ultrastructural morphology in this patient group. CONCLUSIONS: The ultrastructural morphology of the venous valves in chronic venous disorders may not depend on age in patients presenting with C2 disease. This conclusion may or may not apply to all C classes as we investigated a homogenous group of patients with C2 limbs.


Assuntos
Microscopia Eletrônica de Transmissão , Veia Safena/ultraestrutura , Varizes/patologia , Válvulas Venosas/ultraestrutura , Fatores Etários , Biópsia , Doença Crônica , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Veia Safena/cirurgia , Varizes/cirurgia , Válvulas Venosas/cirurgia
18.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L173-L183, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29644892

RESUMO

Alterations of the pulmonary vasculature are an important feature of human lung diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and bronchopulmonary dysplasia. Experimental studies to investigate the pathogenesis or a therapeutic intervention in animal models of these diseases often require robust, meaningful, and efficient morphometric data that allow for appropriate statistical testing. The gold standard for obtaining such data is design-based stereology. However, certain morphological characteristics of the pulmonary vasculature make the implementation of stereological methods challenging. For example, the alveolar capillary network functions according to the sheet flow principle, thus making unbiased length estimations impossible and requiring other strategies to obtain mechanistic morphometric data. Another example is the location of pathological changes along the branches of the vascular tree. For developmental defects like in bronchopulmonary dysplasia or for pulmonary hypertension, it is important to know whether certain segments of the vascular tree are preferentially altered. This cannot be overcome by traditional stereological methods but requires the combination of a three-dimensional data set and stereology. The present review aims at highlighting the great potential while discussing the major challenges (such as time consumption and data volume) of this combined approach. We hope to raise interest in the potential of this approach and thus stimulate solutions to overcome the existing challenges.


Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Imageamento Tridimensional , Pulmão , Modelos Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Animais , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
20.
J Anat ; 232(2): 283-295, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193065

RESUMO

More frequent utilization of non-heart-beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury-related graft damage or dysfunction. Due to their immunomodulating and tissue-remodelling properties, bone-marrow-derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short- and long-term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood-gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham-operated control group. In pigs of groups 2-4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion-fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury-related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra-alveolar oedema, and the intracellular and intra-alveolar surfactant pool. Additionally, the volume-weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume-weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2-4: 0.180-0.373 µm³) compared with the sham control group (median 0.814 µm³). This was due to a lower number of large lb profiles (size classes 5-15). In contrast, the intra-alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short-term model.


Assuntos
Barreira Alveolocapilar/patologia , Transplante de Pulmão/métodos , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Surfactantes Pulmonares , Animais , Modelos Animais de Doenças , Parada Cardíaca , Traumatismo por Reperfusão/patologia , Suínos , Isquemia Quente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA