Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Ultrasound Med Biol ; 50(6): 920-926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521695

RESUMO

OBJECTIVE: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. METHODS: The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n = 7 lesions) was compared to a craniectomy approach (n = 22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using histologic methods from a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. RESULTS: Comparing a motorized adjustment system (∼1 mm precision, n = 17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n = 14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. CONCLUSIONS: The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.


Assuntos
Fórnice , Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Ratos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fórnice/diagnóstico por imagem , Fórnice/cirurgia , Ratos Sprague-Dawley , Transdutores , Cirurgia Assistida por Computador/métodos , Masculino , Imageamento por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos
2.
Int J Hyperthermia ; 41(1): 2301489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234019

RESUMO

PURPOSE: To evaluate numerical simulations of focused ultrasound (FUS) with a rabbit model, comparing simulated heating characteristics with magnetic resonance temperature imaging (MRTI) data collected during in vivo treatment. METHODS: A rabbit model was treated with FUS sonications in the biceps femoris with 3D MRTI collected. Acoustic and thermal properties of the rabbit muscle were determined experimentally. Numerical models of the rabbits were created, and tissue-type-specific properties were assigned. FUS simulations were performed using both the hybrid angular spectrum (HAS) method and k-Wave. Simulated power deposition patterns were converted to temperature maps using a Pennes' bioheat equation-based thermal solver. Agreement of pressure between the simulation techniques and temperature between the simulation and experimental heating was evaluated. Contributions of scattering and absorption attenuation were considered. RESULTS: Simulated peak pressures derived using the HAS method exceeded the simulated peak pressures from k-Wave by 1.6 ± 2.7%. The location and FWHM of the peak pressure calculated from HAS and k-Wave showed good agreement. When muscle acoustic absorption value in the simulations was adjusted to approximately 54% of the measured attenuation, the average root-mean-squared error between simulated and experimental spatial-average temperature profiles was 0.046 ± 0.019 °C/W. Mean distance between simulated and experimental COTMs was 3.25 ± 1.37 mm. Transverse FWHMs of simulated sonications were smaller than in in vivo sonications. Longitudinal FWHMs were similar. CONCLUSIONS: Presented results demonstrate agreement between HAS and k-Wave simulations and that FUS simulations can accurately predict focal position and heating for in vivo applications in soft tissue.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Coelhos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Temperatura , Acústica , Espectroscopia de Ressonância Magnética
3.
IEEE Trans Biomed Eng ; 71(1): 355-366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37556341

RESUMO

OBJECTIVE: We present the development of a non-contrast multi-parametric magnetic resonance (MPMR) imaging biomarker to assess treatment outcomes for magnetic resonance-guided focused ultrasound (MRgFUS) ablations of localized tumors. Images obtained immediately following MRgFUS ablation were inputs for voxel-wise supervised learning classifiers, trained using registered histology as a label for thermal necrosis. METHODS: VX2 tumors in New Zealand white rabbits quadriceps were thermally ablated using an MRgFUS system under 3 T MRI guidance. Animals were re-imaged three days post-ablation and euthanized. Histological necrosis labels were created by 3D registration between MR images and digitized H&E segmentations of thermal necrosis to enable voxel-wise classification of necrosis. Supervised MPMR classifier inputs included maximum temperature rise, cumulative thermal dose (CTD), post-FUS differences in T2-weighted images, and apparent diffusion coefficient, or ADC, maps. A logistic regression, support vector machine, and random forest classifier were trained in red a leave-one-out strategy in test data from four subjects. RESULTS: In the validation dataset, the MPMR classifiers achieved higher recall and Dice than a clinically adopted 240 cumulative equivalent minutes at 43 °C (CEM 43) threshold (0.43) in all subjects. The average Dice scores of overlap with the registered histological label for the logistic regression (0.63) and support vector machine (0.63) MPMR classifiers were within 6% of the acute contrast-enhanced non-perfused volume (0.67). CONCLUSIONS: Voxel-wise registration of MPMR data to histological outcomes facilitated supervised learning of an accurate non-contrast MR biomarker for MRgFUS ablations in a rabbit VX2 tumor model.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Animais , Coelhos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Ultrassonografia , Necrose
4.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905085

RESUMO

Objective: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapy to lesion brain tissue, used clinically in patients and preclinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. Methods: The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n=7 lesions) was compared to a craniectomy approach (n=22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. Results: Comparing a motorized adjustment system (∼1 mm precision, n=17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n=14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.

5.
Ultrasound Med Biol ; 49(8): 1892-1900, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271680

RESUMO

OBJECTIVE: Focused ultrasound (FUS) has become a non-invasive option for some surgical procedures, including tumor ablation and thalamotomy. Extension of magnetic resonance (MR) imaging-guided focused ultrasound for ablation of slowly perfused cerebrovascular lesions requires a novel treatment monitoring method that does not rely on thermometry or high-frequency Doppler methods. The goal of this study was to evaluate the sensitivity and specificity of strain estimates based on MR acoustic radiation force imaging (MR-ARFI) for differentiation of solids and liquids. METHODS: Strain fields were estimated in gelatin-based tissue-mimicking focused ultrasound phantoms on the basis of apparent displacement fields measured by MR-ARFI. MR-ARFI and diffusion-weighted imaging (DWI) measurements were made before and after FUS-induced heating to evaluate the performance of displacement, strain and apparent diffusion coefficient (ADC) measurements for the discrimination of solid and liquid phases. RESULTS: As revealed by receiver operating characteristic analyses, axial normal strain and shear strain components performed significantly better than axial displacement measurements alone when predicting whether a gelatin had melted. Additional measurements must be made to estimate certain strain components, so this trade-off must be considered when developing clinical strategies. ADC had the best overall performance, but DWI is vulnerable to signal dropouts and susceptibility artifacts near cerebrovascular lesions, so this metric may have limited clinical applicability. CONCLUSION: Strain components based on MR-ARFI apparent displacement measurements perform better than apparent displacement measurements alone at discriminating between solids and liquids. These methods are applicable to FUS treatment monitoring and evaluation of mechanical tissue properties in vivo.


Assuntos
Gelatina , Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ondas Ultrassônicas
6.
Magn Reson Imaging ; 96: 126-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496098

RESUMO

Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.


Assuntos
Neoplasias da Mama , Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Humanos , Feminino , Temperatura , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Termometria/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagens de Fantasmas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5008-5011, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085902

RESUMO

Magnetic Resonance Thermometry Imaging (MRTI) holds great potential in laser ablation (LA) monitoring. It provides the real-time multidimensional visualization of the treatment effect inside the body, thus enabling accurate intraoperative prediction of the thermal damage induced. Despite its great potential., thermal maps obtained with MRTI may be affected by numerous artifacts. Among the sources of error producing artifacts in the images., the cavitation phenomena which could occur in the tissue during LA induces dipole-structured artifacts. In this work., an analysis of the cavitation artifacts occurring during LA in a gelatin phantom in terms of symmetry in space and symmetry of temperature values was performed. Results of 2 Wand 4 W laser power were compared finding higher symmetry for the 2 W case in terms of both dimensions of artifact-lobes and difference in temperature values extracted in specular pixels in the image. This preliminary investigation of artifact features may provide a step forward in the identification of the best strategy to correct and avoid artifact occurrence during thermal therapy monitoring. Clinical Relevance- This work presents an analysis of cavitation artifacts in MRTI from LA which must be corrected to avoid error in the prediction of thermal damage during LA monitoring.


Assuntos
Terapia a Laser , Termometria , Artefatos , Técnicas de Diagnóstico Cardiovascular , Imageamento por Ressonância Magnética
8.
Sci Rep ; 11(1): 18923, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556678

RESUMO

Advances in imaging and early cancer detection have increased interest in magnetic resonance (MR) guided focused ultrasound (MRgFUS) technologies for cancer treatment. MRgFUS ablation treatments could reduce surgical risks, preserve organ tissue and function, and improve patient quality of life. However, surgical resection and histological analysis remain the gold standard to assess cancer treatment response. For non-invasive ablation therapies such as MRgFUS, the treatment response must be determined through MR imaging biomarkers. However, current MR biomarkers are inconclusive and have not been rigorously evaluated against histology via accurate registration. Existing registration methods rely on anatomical features to directly register in vivo MR and histology. For MRgFUS applications in anatomies such as liver, kidney, or breast, anatomical features that are not caused by the treatment are often insufficient to drive direct registration. We present a novel MR to histology registration workflow that utilizes intermediate imaging and does not rely on anatomical MR features being visible in histology. The presented workflow yields an overall registration accuracy of 1.00 ± 0.13 mm. The developed registration pipeline is used to evaluate a common MRgFUS treatment assessment biomarker against histology. Evaluating MR biomarkers against histology using this registration pipeline will facilitate validating novel MRgFUS biomarkers to improve treatment assessment without surgical intervention. While the presented registration technique has been evaluated in a MRgFUS ablation treatment model, this technique could be potentially applied in any tissue to evaluate a variety of therapeutic options.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Processamento de Imagem Assistida por Computador , Imagem por Ressonância Magnética Intervencionista , Neoplasias/terapia , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Necrose/diagnóstico , Necrose/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Coelhos , Resultado do Tratamento
9.
Med Phys ; 48(9): 4719-4729, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34265109

RESUMO

PURPOSE: Develop and evaluate the effectiveness of a T1-based correction method for errors in proton resonant frequency shift thermometry due to non-local field effects caused by heating in fatty breast tissues. METHODS: Computational models of human breast tissue were created by segmenting MRI data from a healthy human volunteer. MR-guided focused ultrasound (MRgFUS) heating and MR thermometry measurements were simulated in several locations in the heterogeneous segmented breast models. A T1-based correction method for PRF thermometry errors was applied and the maximum positive and negative errors and the root mean squared error (RMSE) in a region around each heating location was evaluated with and without correction. The method uses T1 measurements to estimate the temperature change in fatty tissues and correct for their influence. Experimental data from a heating study in cadaver breast tissue were analyzed, and the expected PRFS error computed. RESULTS: The simulated MR thermometry had maximum single voxel errors ranging between 10% and 18% when no correction was applied. Applying the correction led to a considerable improvement, lowering the maximum error range to 2%-5%. The 5th to 95th percentile interval of the temperature error distribution was also lowered with correction, from approximately 3.5 to 1°C. This correction worked even when T1 times were uniformly raised or lowered by 5%-10%. The experimental data showed predicted errors of 15%. CONCLUSIONS: This simulation study demonstrates that the T1-based correction method reduces MR thermometry errors due to non-local effects from heating in fatty tissues, potentially improving the accuracy of thermometry measurements during MRgFUS treatments. The presented correction method is reliant on having a patient-specific 3D model of the breast, and may be limited by the accuracy of the fat temperatures which in turn may be limited by noise or bias present in the T1 measurements.


Assuntos
Prótons , Termometria , Mama/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Ultrassonografia
10.
Int J Hyperthermia ; 38(1): 679-690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33899653

RESUMO

PURPOSE: Magnetic resonance guided focused ultrasound (MRgFUS) treatment of tumors uses inter-sonication delays to allow heat to dissipate from the skin and other near-field tissues. Despite inter-sonication delays, treatment of tumors close to the skin risks skin burns. This work has designed and evaluated an open-source, conformable, skin-cooling system for body MRgFUS treatments to reduce skin burns and enable ablation closer to the skin. METHODS: A MR-compatible skin cooling system is described that features a conformable skin-cooling pad assembly with feedback control allowing continuous flow and pressure maintenance during the procedure. System performance was evaluated with hydrophone, phantom and in vivo porcine studies. Sonications were performed 10 and 5 mm from the skin surface under both control and forced convective skin-cooling conditions. 3D MR temperature imaging was acquired in real time and the accumulated thermal dose volume was measured. Gross analysis of the skin post-sonication was further performed. Device conformability was demonstrated at several body locations. RESULTS: Hydrophone studies demonstrated no beam aberration, but a 5-12% reduction of the peak pressure due to the presence of the skin-cooling pad assembly in the acoustic near field. Phantom evaluation demonstrated there is no MR temperature imaging precision reduction or any other artifacts present due to the coolant flow during MRgFUS sonication. The porcine studies demonstrated skin burns were reduced in size or eliminated when compared to the control condition. CONCLUSION: An open-source design of an MRgFUS active skin cooling system demonstrates device conformability with a reduction of skin burns while ablating superficial tissues.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Sonicação , Suínos
11.
Phys Med Biol ; 66(5)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33352538

RESUMO

A magnetic resonance (MR) shear wave elastography technique that uses transient acoustic radiation force impulses from a focused ultrasound (FUS) transducer and a sinusoidal-shaped MR displacement encoding strategy is presented. Using this encoding strategy, an analytic expression for calculating the shear wave speed in a heterogeneous medium was derived. Green's function-based simulations were used to evaluate the feasibility of calculating shear wave speed maps using the analytic expression. Accuracy of simulation technique was confirmed experimentally in a homogeneous gelatin phantom. The elastography measurement was compared to harmonic MR elastography in a homogeneous phantom experiment and the measured shear wave speed values differed by less than 14%. This new transient elastography approach was able to map the position and shape of inclusions sized from 8.5 to 14 mm in an inclusion phantom experiment. These preliminary results demonstrate the feasibility of using a straightforward analytic expression to generate shear wave speed maps from MR images where sinusoidal-shaped motion encoding gradients are used to encode the displacement-time history of a transiently propagating wave-packet. This new measurement technique may be particularly well suited for performing elastography before, during, and after MR-guided FUS therapies since the same device used for therapy is also used as an excitation source for elastography.


Assuntos
Simulação por Computador , Técnicas de Imagem por Elasticidade , Acústica , Técnicas de Imagem por Elasticidade/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
12.
IEEE Trans Biomed Eng ; 68(3): 893-904, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32784128

RESUMO

OBJECTIVE: This paper presents and evaluates a breast-specific magnetic resonance guided focused ultrasound (MRgFUS) system. A first-in-human evaluation demonstrates the novel hardware, a sophisticated tumor targeting algorithm and a volumetric magnetic resonance imaging (MRI) protocol. METHODS: At the time of submission, N = 10 patients with non-palpable T0 stage breast cancer have been treated with the breast MRgFUS system. The described tumor targeting algorithm is evaluated both with a phantom test and in vivo during the breast MRgFUS treatments. Treatments were planned and monitored using volumetric MR-acoustic radiation force imaging (MR-ARFI) and temperature imaging (MRTI). RESULTS: Successful technical treatments were achieved in 80 % of the patients. All patients underwent the treatment with no sedation and 60 % of participants had analgesic support. The total MR treatment time ranged from 73 to 114 minutes. Mean error between desired and achieved targeting in a phantom was 2.9 ±1.8 mm while 6.2 ±1.9 mm was achieved in patient studies, assessed either with MRTI or MR-ARFI measurements. MRTI and MR-ARFI were successful in 60 % and 70 % of patients, respectively. CONCLUSION: The targeting accuracy allows the accurate placement of the focal spot using electronic steering capabilities of the transducer. The use of both volumetric MRTI and MR-ARFI provides complementary treatment planning and monitoring information during the treatment, allowing the treatment of all breast anatomies, including homogeneously fatty breasts.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Protocolos Clínicos , Humanos , Imagens de Fantasmas , Ultrassonografia
13.
IEEE Trans Biomed Eng ; 68(5): 1737-1747, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946378

RESUMO

Noninvasive MR-guided focused ultrasound (MRgFUS) treatments are promising alternatives to the surgical removal of malignant tumors. A significant challenge is assessing the viability of treated tissue during and immediately after MRgFUS procedures. Current clinical assessment uses the nonperfused volume (NPV) biomarker immediately after treatment from contrast-enhanced MRI. The NPV has variable accuracy, and the use of contrast agent prevents continuing MRgFUS treatment if tumor coverage is inadequate. This work presents a novel, noncontrast, learned multiparametric MR biomarker that can be used during treatment for intratreatment assessment, validated in a VX2 rabbit tumor model. A deep convolutional neural network was trained on noncontrast multiparametric MR images using the NPV biomarker from follow-up MR imaging (3-5 days after MRgFUS treatment) as the accurate label of nonviable tissue. A novel volume-conserving registration algorithm yielded a voxel-wise correlation between treatment and follow-up NPV, providing a rigorous validation of the biomarker. The learned noncontrast multiparametric MR biomarker predicted the follow-up NPV with an average DICE coefficient of 0.71, substantially outperforming the current clinical standard (DICE coefficient = 0.53). Noncontrast multiparametric MR imaging integrated with a deep convolutional neural network provides a more accurate prediction of MRgFUS treatment outcome than current contrast-based techniques.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Biomarcadores , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Coelhos , Resultado do Tratamento , Ultrassonografia
14.
Int J Hyperthermia ; 37(1): 283-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32204632

RESUMO

Purpose: To develop and characterize a tissue-mimicking phantom that enables the direct comparison of magnetic resonance (MR) and ultrasound (US) imaging techniques useful for monitoring high-intensity focused ultrasound (HIFU) treatments. With no additions, gelatin phantoms produce little if any scattering required for US imaging. This study characterizes the MR and US image characteristics as a function of psyllium husk concentration, which was added to increase US scattering.Methods: Gelatin phantoms were constructed with varying concentrations of psyllium husk. The effects of psyllium husk concentration on US B-mode and MR imaging were evaluated at nine different concentrations. T1, T2, and T2* MR maps were acquired. Acoustic properties (attenuation and speed of sound) were measured at frequencies of 0.6, 1.0, 1.8, and 3.0 MHz using a through-transmission technique. Phantom elastic properties were evaluated for both time and temperature dependence.Results: Ultrasound image echogenicity increased with increasing psyllium husk concentration while quality of gradient-recalled echo MR images decreased with increasing concentration. For all phantoms, the measured speed of sound ranged between 1567-1569 m/s and the attenuation ranged between 0.42-0.44 dB/(cm·MHz). Measured T1 ranged from 974-1051 ms. The T2 and T2* values ranged from 97-108 ms and 48-88 ms, respectively, with both showing a decreasing trend with increased psyllium husk concentration. Phantom stiffness, measured using US shear-wave speed measurements, increased with age and decreased with increasing temperature.Conclusions: The presented dual-use tissue-mimicking phantom is easy to manufacture and can be used to compare and evaluate US-guided and MR-guided HIFU imaging protocols.


Assuntos
Gelatina/química , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas/normas , Psyllium/química , Ultrassonografia/métodos , Humanos
15.
Lasers Surg Med ; 51(3): 286-300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30645017

RESUMO

OBJECTIVES: To develop, test and evaluate improved 2D and 3D protocols for proton resonance frequency shift magnetic resonance temperature imaging (MRTI) of laser interstitial thermal therapy (LITT). The objective was to develop improved MRTI protocols in terms of temperature measurement precision and volume coverage compared to the 2D MRTI protocol currently used with a commercially available LITT system. METHODS: Four different 2D protocols and four different 3D protocols were investigated. The 2D protocols used multi-echo readouts to prolong the total MR sampling time and hence the MRTI precision, without prolonging the total acquisition time. The 3D protocols provided volumetric thermometry by acquiring a slab of 12 contiguous slices in the same acquisition time as the 2D protocols. The study only considered readily available pulse sequences (Cartesian 2D and 3D gradient recalled echo and echo planar imaging [EPI]) and methods (partial Fourier and parallel imaging) to ensure wide availability and rapid clinical implementation across vendors and field strengths. In vivo volunteer studies were performed to investigate and compare MRTI precision and image quality. Phantom experiments with LITT heating were performed to investigate and compare MRTI precision and accuracy. Different coil setups were used in the in vivo studies to assess precision differences between using local (such as flex and head coils) and non-local (i.e., body coil) receive coils. Studies were performed at both 1.5 T and 3 T. RESULTS: The improved 2D protocols provide up to a factor of two improvement in the MRTI precision in the same acquisition time, compared to the currently used clinical protocol. The 3D echo planar imaging protocols provide comparable precision as the currently used 2D clinical protocol, but over a substantially larger field of view, without increasing the acquisition time. As expected, local receive coils perform substantially better than the body coil, and 3 T provides better MRTI accuracy and precision than 1.5 T. 3D data can be zero-filled interpolated in all three dimensions (as opposed to just two dimensions for 2D data), reducing partial volume effects and measuring higher maximum temperature rises. CONCLUSIONS: With the presented protocols substantially improved MRTI precision (for 2D imaging) or greatly improved field of view coverage (for 3D imaging) can be achieved in the same acquisition time as the currently used protocol. Only widely available pulse sequences and acquisition methods were investigated, which should ensure quick translation to the clinic. Lasers Surg. Med. 51:286-300, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Hipertermia Induzida , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Termometria/métodos , Protocolos Clínicos , Imagem Ecoplanar , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
16.
Magn Reson Med ; 81(5): 3153-3167, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663806

RESUMO

PURPOSE: To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS: ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS: MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION: MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.


Assuntos
Acústica , Técnicas de Imagem por Elasticidade , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Bovinos , Modelos Animais , Movimento (Física) , Imagens de Fantasmas , Resistência ao Cisalhamento , Estresse Mecânico , Transdutores
17.
Magn Reson Med ; 81(2): 1104-1117, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30257059

RESUMO

PURPOSE: To implement and evaluate an efficient multiple-point MR acoustic radiation force imaging pulse sequence that can volumetrically measure tissue displacement and evaluate tissue stiffness using focused ultrasound (FUS) radiation force. METHODS: Bipolar motion-encoding gradients were added to a gradient-recalled echo segmented EPI pulse sequence with both 2D and 3D acquisition modes. Multiple FUS-ON images (FUS power > 0 W) were interleaved with a single FUS-OFF image (FUS power = 0 W) on the TR level, enabling simultaneous measurements of volumetric tissue displacement (by complex subtraction of the FUS-OFF image from the FUS-ON images) and proton resonance frequency shift MR thermometry (from the OFF image). Efficiency improvements included partial Fourier acquisition, parallel imaging, and encoding up to 4 different displacement positions into a single image. Experiments were performed in homogenous and dual-stiffness phantoms, and in ex vivo porcine brain. RESULTS: In phantoms, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 5 s to 10 s for a 2D slice, and 60 s for a 3D volume, using parallel imaging and encoding 2 displacement positions/image. In ex vivo porcine brain, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 20 s for a 3D volume, using partial Fourier and parallel imaging and encoding 4 displacement positions/image. In 1 experiment it was observed that tissue displacement in ex vivo brain decreased by approximately 22% following FUS ablation. CONCLUSION: With the described efficiency improvements it is possible to acquire volumetric multiple-point magnetic resonance acoustic radiation force imaging maps, with simultaneous proton resonance frequency shift MR thermometry maps, in clinically acceptable times.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Termometria , Algoritmos , Animais , Técnicas de Imagem por Elasticidade , Análise de Fourier , Imageamento por Ressonância Magnética , Movimento (Física) , Imagens de Fantasmas , Suínos , Ultrassonografia
18.
Magn Reson Med ; 79(3): 1515-1524, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28795419

RESUMO

PURPOSE: A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS: MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS: Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION: This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Termometria/métodos , Animais , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Suínos
19.
Int J Hyperthermia ; 32(7): 723-34, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27441427

RESUMO

MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.


Assuntos
Acústica , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Sonicação , Temperatura
20.
Magn Reson Med ; 76(3): 803-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26445135

RESUMO

PURPOSE: MR guided focused ultrasound procedures require accurate focal spot localization in three dimensions. This study presents a three-dimensional (3D) pulse sequence for acoustic radiation force imaging (ARFI) that efficiently localizes the focal spot by means of ultrasound induced tissue displacement over a large field-of-view. METHODS: A novel unbalanced bipolar motion encoding gradient was implemented to maximize time available for motion encoding, reduce echo times, and allow for longer echo train lengths. Two advanced features, kz reduction factor (KZRF) and kz -level interleaving, were implemented to reduce tissue heating. Studies in gelatin phantoms compared the location of peak displacement and temperature measured by 3D MR thermometry. MR-ARFI induced tissue heating was evaluated through a parametric study of sequence parameters and MR thermometry measurements during repeated application of ARFI sonication patterns. Sequence performance was characterized in the presence of respiration and tissue inhomogeneity. RESULTS: The location of peak displacement and temperature rise agreed within 0.2 ± 0.1 mm and 0.5 ± 0.3 mm in the transverse and longitudinal direction, respectively. The 3D displacement maps were acquired safely, and the KZRF and kz -level interleaving features reduced tissue heating by 51%. High quality displacement maps were obtained despite respiration and tissue inhomogeneities. CONCLUSION: This sequence provides a safe, accurate, and simple approach to localizing the focal spot in three dimensions with a single scan. Magn Reson Med 76:803-813, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Cadáver , Feminino , Humanos , Aumento da Imagem/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA