Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Med (Lausanne) ; 9: 1070529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619639

RESUMO

In addition to complications of acute diseases, chronic viral infections are linked to both malignancies and autoimmune disorders. Lack of adequate treatment options for Epstein-Barr virus (EBV), Human T-lymphotropic virus type 1 (HTLV-1), and human papillomavirus (HPV) remains. The NexImmune Artificial Immune Modulation (AIM) nanoparticle platform can be used to direct T cell responses by mimicking the dendritic cell function. In one application, AIM nanoparticles are used ex vivo to enrich and expand (E+E) rare populations of multi-antigen-specific CD8+ T cells for use of these cells as an AIM adoptive cell therapy. This study has demonstrated using E+E CD8+ T cells, the functional relevance of targeting EBV, HTLV-1, and HPV. Expanded T cells consist primarily of effector memory, central memory, and self-renewing stem-like memory T cells directed at selected viral antigen peptides presented by the AIM nanoparticle. T cells expanded against either EBV- or HPV-antigens were highly polyfunctional and displayed substantial in vitro cytotoxic activity against cell lines expressing the respective antigens. Our initial work was in the context of exploring T cells expanded from healthy donors and restricted to human leukocyte antigen (HLA)-A*02:01 serotype. AIM Adoptive Cell Therapies (ACT) are also being developed for other HLA class I serotypes. AIM adoptive cell therapies of autologous or allogeneic T cells specific to antigens associated with acute myeloid leukemia and multiple myeloma are currently in the clinic. The utility and flexibility of the AIM nanoparticle platform will be expanded as we advance the second application, an AIM injectable off-the-shelf nanoparticle, which targets multiple antigen-specific T cell populations to either activate, tolerize, or destroy these targeted CD8+ T cells directly in vivo, leaving non-target cells alone. The AIM injectable platform offers the potential to develop new multi-antigen specific therapies for treating infectious diseases, cancer, and autoimmune diseases.

2.
Clin Cancer Res ; 26(13): 3384-3396, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241816

RESUMO

PURPOSE: Generation of antigen-specific T cells from patients with cancer employs large numbers of peripheral blood cells and/or tumor-infiltrating cells to generate antigen-presenting and effector cells commonly requiring multiple rounds of restimulation ex vivo. We used a novel paramagnetic, nanoparticle-based artificial antigen-presenting cell (nano-aAPC) that combines anti-CD28 costimulatory and human MHC class I molecules that are loaded with antigenic peptides to rapidly expand tumor antigen-specific T cells from patients with melanoma. EXPERIMENTAL DESIGN: Nano-aAPC-expressing HLA-A*0201 molecules and costimulatory anti-CD28 antibody and HLA-A*0201 molecules loaded with MART-1 or gp100 class I-restricted peptides were used to stimulate CD8 T cells purified from the peripheral blood of treatment-naïve or PD-1 antibody-treated patients with stage IV melanoma. Expanded cells were restimulated with fresh peptide-pulsed nano-aAPC at day 7. Phenotype analysis and functional assays including cytokine release, cytolysis, and measurement of avidity were conducted. RESULTS: MART-1-specific CD8 T cells rapidly expanded up to 1,000-fold by day 14 after exposure to peptide-pulsed nano-aAPC. Expanded T cells had a predominantly stem cell memory CD45RA+/CD62L+/CD95+ phenotype; expressed ICOS, PD-1, Tim3, and LAG3; and lacked CD28. Cells from patients with melanoma were polyfunctional; highly avid; expressed IL2, IFNγ, and TNFα; and exhibited cytolytic activity against tumor cell lines. They expanded 2- to 3-fold after exposure to PD-1 antibody in vivo, and expressed a highly diverse T-cell receptor V beta repertoire. CONCLUSIONS: Peptide-pulsed nano-aAPC rapidly expanded polyfunctional antigen-specific CD8 T cells with high avidity, potent lytic function, and a stem cell memory phenotype from patients with melanoma.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/imunologia , Melanoma/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Melanoma/metabolismo , Modelos Biológicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
3.
Transfus Med Hemother ; 47(6): 464-471, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33442341

RESUMO

Over the last decade, tremendous progress has been made in the field of adoptive cell therapy. The two prevailing modalities include endogenous non-engineered approaches and genetically engineered T-cell approaches. Endogenous non-engineered approaches include dendritic cell-based systems and tumor-infiltrating lymphocytes (TIL) that are used to produce multi-antigen-specific T-cell products. Genetically engineered approaches, such as T-cell receptor engineered cells and chimeric antigen receptor T cells are used to produce single antigen-specific T-cell products. It is noted by the authors that there are alternative methods to sort for antigen-specific T cells such as peptide multimer sorting or cytokine secretion assay-based sorting, both of which are potentially challenging for broad development and commercialization. In this review, we are focusing on a novel nanoparticle technology that generates a non-engineered product from the endogenous T-cell repertoire. The most common approaches for ex vivo activation and expansion of endogenous, non-genetically engineered cell therapy products rely on dendritic cell-based systems or IL-2 expanded TIL. Hurdles remain in developing efficient, consistent, controlled processes; thus, these processes still have limited access to broad patient populations. Here, we describe a novel approach to produce cellular therapies at clinical scale, using proprietary nanoparticles combined with a proprietary manufacturing process to enrich and expand antigen-specific CD8+ T-cell products with consistent purity, identity, and composition required for effective and durable anti-tumor response.

4.
Life Sci ; 209: 255-258, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102903

RESUMO

Major histocompatibility complexes (MHC) have been used for more than two decades in clinical and pre-clinical approaches of tumor immunotherapy. They have been proven efficient for detecting anti-tumor-specific T cells when utilized as soluble multimers, immobilized on cells or artificial structures such as artificial antigen-presenting cells (aAPC) and have been shown to generate effective anti-tumor responses. In this review we summarize the use of soluble MHC class I complexes in tumor vaccination studies, highlighting the different strategies and their contradicting results. In summary, we believe that soluble MHC class I molecules represent an exciting tool with great potential to impact the understanding and development of immunotherapeutic approaches on many levels from monitoring to treatment.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Neoplasias/metabolismo
5.
Front Immunol ; 9: 2953, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619313

RESUMO

Cytomegalovirus (CMV) infection/reactivation remains among the most important complications of immunosuppression after transplantation. However, recent clinical observations indicate that mammalian target of rapamycin (mTOR) inhibition with sirolimus may improve the outcome of CMV complications. Underlying mechanisms of this observation, particularly the effect of sirolimus on naïve- and CMV-specific cytotoxic CD8+ T-cell (CMV-CTL) functionality is still undiscovered. Here, the influence of sirolimus on naïve and memory CMV-CTLs was determined by CD3/CD28 crosslinking and alloreactivity assays. After stimulating CMV-CTL with HLA-A*02:01-restricted CMVpp65-peptide loaded artificial antigen-presenting cells (aAPCs), we measured the effect of sirolimus on T-cell proliferation, phenotype, and functionality. Sirolimus significantly improved CMV-specific effector memory T-cell function and negatively influenced naïve T cells. This unique mechanism of action was further characterized by increased secretion of interferon-gamma (IFN-γ), granzyme B (GzB) and enhanced target-cell-dependent cytotoxic capacity of activated CMV-CTLs. Next-generation-sequencing (NGS) was applied to monitor T-cell receptor (TCR)-repertoire dynamics and to verify, that the increased functionality was not related to sirolimus-resistant CTL-clones. Instead, modulation of environmental cues during CMV-CTL development via IL-2 receptor (IL-2R)-driven signal transducer and activator of transcription-5 (STAT-5) signaling under mTOR inhibition allowed fine-tuning of T-cell programming for enhanced antiviral response with stable TCR-repertoire dynamics. We show for the first time that sirolimus acts selectively on human naïve and memory T cells and improves CMV-specific T-cell function via modulation of the environmental milieu. The data emphasize the importance to extend immune monitoring including cytokine levels and T-cell functionality which will help to identify patients who may benefit from individually tailored immunosuppression.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Terapia de Imunossupressão/métodos , Sirolimo/administração & dosagem , Linfócitos T Citotóxicos/efeitos dos fármacos , Adolescente , Criança , Citocinas/sangue , Citocinas/imunologia , Citocinas/metabolismo , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Transplante de Rim/efeitos adversos , Masculino , Seleção de Pacientes , Receptores de Interleucina-2/sangue , Receptores de Interleucina-2/imunologia , Linfócitos T Citotóxicos/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia , Transplante Homólogo/efeitos adversos , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia
6.
Transfusion ; 58(1): 88-99, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29023759

RESUMO

BACKGROUND: Transplantation of hematopoietic stem cells (HSCs) from peripheral blood (PB) or cord blood (CB) is well established. HSCs from CB are associated with a lower risk of graft-versus-host disease (GVHD), but antigen-independent expanded CB- and PB-derived T cells can induce GVHD in allo-HSC recipients. CB-derived cells might be more suitable for adoptive immunotherapy as they have unique T-cell characteristics. Here, we describe functional differences between CB and PB T cells stimulated with different cytokine combinations involved in central T-cell activation. STUDY DESIGN AND METHODS: Isolated CD8+ T cells from CB and PB were stimulated antigen independently with anti-CD3/CD28 stimulator beads or in an antigen-dependent manner with artificial antigen-presenting cells loaded with the HLA-A*02:01-restricted peptide of tumor-associated melanoma antigen recognized by T cells 1 (MART1). CB and PB T cells cultured in the presence of interleukin (IL)-7, IL-15, IL-12, and IL-21 were characterized for T-cell phenotype and specificity, that is, by CD107a, interferon-γ, tumor necrosis factor-α, and IL-2 expression. RESULTS: After antigen-independent stimulation, activated CD8+ CB T cells exhibited stronger proliferation and function than those from PB. After antigenic stimulation, MART1-reactive CB T cells were naïve (CD45RA+CCR7+), cytotoxic, and highly variable in expressing homing marker CD62L. Addition of IL-21 resulted in increased T-cell proliferation, whereas supplementation with IL-12 decreased IL-21-induced expansion, but increased the functionality and cytotoxicity of CB and PB T cells. CONCLUSION: MART1-reactive CB T cells with a more naïve phenotype and improved properties for homing can be generated. The results contribute to better understanding the effects on GVHD and graft versus tumor.


Assuntos
Sangue Fetal/citologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Separação Celular , Células Cultivadas , Feminino , Antígeno HLA-A2/imunologia , Humanos , Imunofenotipagem , Interleucinas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Proteína 1 de Membrana Associada ao Lisossomo/análise , Antígeno MART-1/imunologia , Microesferas , Especificidade de Órgãos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
7.
Oncotarget ; 7(42): 68503-68512, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27602488

RESUMO

Redirection of T cells to target and destroy tumors has become an important clinical tool and major area of research in tumor immunology. Here we present a novel, nanoparticle-based approach to selectively bind antigen-specific cytotoxic T cells (CTL) and redirect them to kill tumors, termed ATR (Antigen-specific T cell Redirectors). ATR were generated by decorating nanoparticles with both an antigen-specific T cell binding moiety, either peptide loaded MHC-Ig dimer or clonotypic anti-TCR antibody, and a model tumor cell binding moiety, anti-CD19 antibody to engage CD19+ tumor cells. ATR stably bind tumor cells and CTL in a dose dependent fashion and stimulate antigen-specific conjugate formation between those cells. ATR induced redirected lysis of tumor cells in vitro, as demonstrated by 51Cr-release killing. In vivo ATR administration led to reduced tumor growth in a SCID/beige human lymphoma treatment model. In summary, ATR represent a novel, nanoparticle based approach for redirecting antigen-specific CTL to kill tumors.


Assuntos
Antígenos/imunologia , Citotoxicidade Imunológica/imunologia , Linfoma/imunologia , Nanopartículas/química , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Linfoma/patologia , Linfoma/terapia , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Linfócitos T Citotóxicos/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Clin Cancer Res ; 22(16): 4249-58, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076627

RESUMO

PURPOSE: Natural killer T (NKT) cells are important mediators of antitumor immune responses. We have previously shown that ovarian cancers shed the ganglioside GD3, which inhibits NKT-cell activation. Ovarian cancers also secrete high levels of VEGF. In this study, we sought to test the hypothesis that VEGF production by ovarian cancers suppresses NKT-cell-mediated antitumor responses. EXPERIMENTAL DESIGN: To investigate the effects of VEGF on CD1d-mediated NKT-cell activation, a conditioned media model was established, wherein the supernatants from ovarian cancer cell lines (OV-CAR-3 and SK-OV-3) were used to treat CD1d-expressing antigen-presenting cells (APC) and cocultured with NKT hybridomas. Ovarian cancer-associated VEGF was inhibited by treatment with bevacizumab and genistein; conditioned medium was collected, and CD1d-mediated NKT-cell responses were assayed by ELISA. RESULTS: Ovarian cancer tissue and ascites contain lymphocytic infiltrates, suggesting that immune cells traffic to tumors, but are then inhibited by immunosuppressive molecules within the tumor microenvironment. OV-CAR-3 and SK-OV-3 cell lines produce high levels of VEGF and GD3. Pretreatment of APCs with ascites or conditioned medium from OV-CAR-3 and SK-OV-3 blocked CD1d-mediated NKT-cell activation. Inhibition of VEGF resulted in a concomitant reduction in GD3 levels and restoration of NKT-cell responses. CONCLUSIONS: We found that VEGF inhibition restores NKT-cell function in an in vitro ovarian cancer model. These studies suggest that the combination of immune modulation with antiangiogenic treatment has therapeutic potential in ovarian cancer. Clin Cancer Res; 22(16); 4249-58. ©2016 AACR.


Assuntos
Gangliosídeos/farmacologia , Imunomodulação/efeitos dos fármacos , Neoplasias Ovarianas/imunologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Apresentação de Antígeno , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
9.
ACS Nano ; 9(7): 6861-71, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26171764

RESUMO

Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/citologia , Antígenos de Neoplasias/imunologia , Separação Celular/métodos , Nanopartículas/química , Imunidade Adaptativa , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/química , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL
10.
Rambam Maimonides Med J ; 6(1): e0004, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25717386

RESUMO

Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT). Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available.

11.
Clin Cancer Res ; 21(9): 2075-83, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25593301

RESUMO

PURPOSE: Artificial antigen-presenting cells, aAPC, have successfully been used to stimulate antigen-specific T-cell responses in vitro as well as in vivo. Although aAPC compare favorably with autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, thereby increasing in vivo functionality, we investigated the efficiency of "don't eat me" three-signal aAPC compared with classical two-signal aAPC. EXPERIMENTAL DESIGN: To generate "don't eat me" aAPC, CD47 was additionally immobilized onto classical aAPC (aAPC(CD47+)). aAPC and aAPC(CD47+) were analyzed in in vitro human primary T-cell and macrophage cocultures. In vivo efficiency was compared in a NOD/SCID T-cell proliferation and a B16-SIY melanoma model. RESULTS: This study demonstrates that aAPC(CD47+) in coculture with human macrophages show a CD47 concentration-dependent inhibition of phagocytosis, whereas their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPC(CD47+)-generated T cells displayed equivalent killing abilities and polyfunctionality when compared with aAPC-generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPC(CD47+) over normal aAPC in conjunction with diverging biodistribution in different organs. CONCLUSIONS: Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus, these next-generation aAPC(CD47+) have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígeno CD47/imunologia , Imunoterapia Adotiva/métodos , Macrófagos/imunologia , Fagocitose/imunologia , Animais , Células Cultivadas , Técnicas de Cocultura , Xenoenxertos , Humanos , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
12.
Immun Inflamm Dis ; 2(3): 181-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25505552

RESUMO

Induction of a T cell mediated immune response is critical for the eradication of viral infections and tumours. Soluble peptide-loaded major histocompatibility complex-Ig ((pep-)MHC-Ig) have been shown to bind their cognate ligands, T cell receptor, with high affinity, and are successfully used to visualize antigen-specific T cells. Furthermore, immobilized (pep-)MHC-Ig can activate and expand antigen-specific T cells in vitro and in vivo. In this study, we investigate the use of (pep-)MHC-Ig as a potential strategy to modulate antigen specific T cell immune responses in vivo. (SIY-)K(b)-Ig immunization, together with the pre-activation by an anti-CD40 monoclonal antibody, is able to stimulate a strong expansion of adoptively transferred 2C transgenic T cells and the formation of long term antigen-specific memory T cells. In addition, mechanistic studies show that the (pep-)MHC-Ig molecules directly activate T cells in vivo without requiring uptake and reprocessing by antigen-presenting cells. Furthermore, B6 mice immunized with (pep-)MHC-Ig molecules inhibit tumour growth in a B16-SIY melanoma prevention model. Thus, soluble (pep-)MHC-Ig molecules represent a powerful tool for active immunotherapy.

13.
J Vis Exp ; (90): e51859, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25145915

RESUMO

Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Epitopos de Linfócito T/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/patologia , Células Apresentadoras de Antígenos/citologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Humanos
14.
J Clin Invest ; 124(1): 198-208, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24292711

RESUMO

The ability of individual T cells to perform multiple effector functions is crucial for protective immunity against viruses and cancer. This polyfunctionality is frequently lost during chronic infections; however, the molecular mechanisms driving T cell polyfunctionality are poorly understood. We found that human T cells stimulated by a high concentration of antigen lacked polyfunctionality and expressed a transcription profile similar to that of exhausted T cells. One specific pathway implicated by the transcription profile in control of T cell polyfunctionality was the MAPK/ERK pathway. This pathway was altered in response to different antigen concentrations, and polyfunctionality correlated with upregulation of phosphorylated ERK. T cells that were stimulated with a high concentration of antigen upregulated sprouty-2 (SPRY2), a negative regulator of the MAPK/ERK pathway. The clinical relevance of SPRY2 was confirmed by examining SPRY2 expression in HIV-specific T cells, where high levels of SPRY2 were seen in HIV-specific T cells and inhibition of SPRY2 expression enhanced the HIV-specific polyfunctional response independently of the PD-1 pathway. Our findings indicate that increased SPRY2 expression during chronic viral infection reduces T cell polyfunctionality and identify SPRY2 as a potential target for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Regulação para Cima , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia
15.
Nanomedicine ; 10(1): 119-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23891987

RESUMO

Artificial antigen presenting cells (aAPC), which deliver stimulatory signals to cytotoxic lymphocytes, are a powerful tool for both adoptive and active immunotherapy. Thus far, aAPC have been synthesized by coupling T cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies. We therefore manufactured aAPC based on two types of nanoscale particle platforms: biocompatible iron-dextran paramagnetic particles (50-100 nm in diameter) and avidin-coated quantum dot nanocrystals (~30 nm). Nanoscale aAPC induced antigen-specific T cell proliferation from mouse splenocytes and human peripheral blood T cells. When injected in vivo, both iron-dextran particles and quantum dot nanocrystals enhanced tumor rejection in a subcutaneous mouse melanoma model. This is the first description of nanoscale aAPC that induce antigen-specific T cell proliferation in vitro and lead to effective T cell stimulation and inhibition of tumor growth in vivo. FROM THE CLINICAL EDITOR: Artifical antigen presenting cells could revolutionize the field of cancer-directed immunotherapy. This team of investigators have manufactured two types of nanoscale particle platform-based aAPCs and demonstrates that both iron-dextran particles and quantum dot nanocrystals enhance tumor rejection in a melanoma model, providing the first description of nanoscale aAPCs that lead to effective T cell stimulation and inhibition of tumor growth.


Assuntos
Imunoterapia , Complexo Ferro-Dextran/uso terapêutico , Melanoma/terapia , Nanopartículas/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/imunologia , Proliferação de Células/efeitos dos fármacos , Humanos , Complexo Ferro-Dextran/imunologia , Melanoma/imunologia , Melanoma/patologia , Camundongos , Nanopartículas/uso terapêutico , Pontos Quânticos/administração & dosagem , Pontos Quânticos/química
16.
Cancer Res ; 72(15): 3744-52, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22649190

RESUMO

Tumors often display mechanisms to avoid or suppress immune recognition. One such mechanism is the shedding of gangliosides into the local tumor microenvironment, and a high concentration of circulating gangliosides is associated with poor prognosis. In this study, we identify ganglioside GD3, which was isolated from the polar lipid fraction of ovarian cancer-associated ascites, as an inhibitory factor that prevents innate immune activation of natural killer T (NKT) cells. Purified GD3 displayed a high affinity for both human and mouse CD1d, a molecule involved in the presentation of lipid antigens to T cells. Purified GD3, as well as substances within the ascites, bound to the CD1d antigenic-binding site and did not require additional processing for its inhibitory effect on NKT cells. Importantly, in vivo administration of GD3 inhibited α-galactosylceramide (α-GalCer)-induced NKT cell activation in a dose-dependent manner. These data therefore indicate that ovarian cancer tumors may use GD3 to inhibit the antitumor NKT cell response as an early mechanism of tumor immune evasion.


Assuntos
Carcinoma/imunologia , Gangliosídeos/isolamento & purificação , Gangliosídeos/farmacologia , Imunidade Inata/efeitos dos fármacos , Neoplasias Ovarianas/imunologia , Animais , Antígenos CD1d/metabolismo , Antígenos CD1d/fisiologia , Ascite/patologia , Carcinoma/patologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Gangliosídeos/fisiologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/patologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia
17.
J Transl Med ; 9: 175, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21992180

RESUMO

BACKGROUND: Heat shock protein 70 (HSP70) has gained major attention as an adjuvant capable of inducing antigen-specific CD8(+) and CD4(+) T-cell responses. The ability of HSP70/peptide complexes to elicit cytotoxic T-cell (CTL) responses by cross-presentation of exogenous antigens via HLA class I molecules is of central interest in immunotherapy. We examined the role of HSP70/CMVpp65(495-503)-peptide complex (HSP70/CMV-PC) in HLA class I-restricted cross-presentation for ex vivo expansion of CMV-specific CTLs. METHODS: CMV-specific T cells generated from PBMCs of HLA-A*02:01/CMV-seropositive donors were stimulated for 21 days with HSP70/CMV-PC and analyzed in functional assays. As a control PBMCs were cultured in the presence of CMVpp65(495-503) peptide or HSP70. Increase of CMV-specific CTLs was visualized by pentameric HLA-A*02:01/CMVpp65(495-503) complex. RESULTS: About 90% of HSP70/CMV-PC generated T cells were CMV-specific and exhibited significantly higher IFN-γ secretion, cytotoxic activity, and an increased heme oxygenase 1 (HO-1) gene expression as compared to about 69% of those stimulated with CMVpp65(495-503) peptide. We decided to classify the HLA-A*02:01/CMV-seropositive donors as weak, medium, and strong responder according to the frequency of generated A2/CMV-pentamer-positive CD8(+) T cells. HSP70/CMV-PC significantly induces strong antiviral T-cell responses especially in those donors with low memory precursor frequencies. Blockage of CD91 with α2-macroglobulin markedly reduced proliferation of antiviral T cells suggesting a major role of this receptor in the uptake of HSP70/CMV-PC. CONCLUSION: This study clearly demonstrates that HSP70/CMV-PC is a potent mediator to induce stronger T-cell responses compared to antiviral peptides. This simple and efficient technique may help to generate significant quantities of antiviral CTLs by cross-presentation. Thus, we propose HSP70 for chaperoning peptides to reach an efficient level of cross-presentation. HSP70/peptide complexes may be particularly useful to generate stronger T-cell responses in cases of low precursor frequencies and may help to improve the efficiency of antigen-specific T-cell therapy for minor antigens.


Assuntos
Antivirais/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Granzimas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Proteínas da Matriz Viral/farmacologia , alfa-Macroglobulinas/metabolismo
18.
J Vis Exp ; (50)2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21505415

RESUMO

CTL with optimal effector function play critical roles in mediating protection against various intracellular infections and cancer. However, individuals may exhibit suppressive immune microenvironment and, in contrast to activating CTL, their autologous antigen presenting cells may tend to tolerize or anergize antigen specific CTL. As a result, although still in the experimental phase, CTL-based adoptive immunotherapy has evolved to become a promising treatment for various diseases such as cancer and virus infections. In initial experiments ex vivo expanded CMV (cytomegalovirus) specific CTL have been used for treatment of CMV infection in immunocompromised allogeneic bone marrow transplant patients. While it is common to have life-threatening CMV viremia in these patients, none of the patients receiving expanded CTL develop CMV related illness, implying the anti-CMV immunity is established by the adoptively transferred CTL. Promising results have also been observed for melanoma and may be extended to other types of cancer. While there are many ways to ex vivo stimulate and expand human CTL, current approaches are restricted by the cost and technical limitations. For example, the current gold standard is based on the use of autologous DC. This requires each patient to donate a significant number of leukocytes and is also very expensive and laborious. Moreover, detailed in vitro characterization of DC expanded CTL has revealed that these have only suboptimal effector function. Here we present a highly efficient aAPC based system for ex vivo expansion of human CMV specific CTL for adoptive immunotherapy (Figure 1). The aAPC were made by coupling cell sized magnetic beads with human HLA-A2-Ig dimer and anti-CD28mAb. Once aAPC are made, they can be loaded with various peptides of interest, and remain functional for months. In this report, aAPC were loaded with a dominant peptide from CMV, pp65 (NLVPMVATV). After culturing purified human CD8(+) CTL from a healthy donor with aAPC for one week, CMV specific CTL can be increased dramatically in specificity up to 98% (Figure 2) and amplified more than 10,000 fold. If more CMV-specific CTL are required, further expansion can be easily achieved by repetitive stimulation with aAPC. Phenotypic and functional characterization shows these expanded cells have an effector-memory phenotype and make significant amounts of both TNFα and IFNγ (Figure 3).


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígeno HLA-A2/imunologia , Imunoglobulinas/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos/imunologia , Citomegalovirus/imunologia , Humanos
19.
Immunotherapy ; 2(4): 539-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20636007

RESUMO

At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Doenças Autoimunes/terapia , Imunoterapia , Células Matadoras Naturais/imunologia , Células Apresentadoras de Antígenos/transplante , Humanos , Células Matadoras Naturais/transplante
20.
Proc Natl Acad Sci U S A ; 107(8): 3669-74, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133680

RESUMO

The functional capacities of CD8(+) T cells important for virus clearance are influenced by interactions with antigen presenting cells (APCs) and CD4(+) T cells during initial selection, subsequent expansion, and development of memory. Recently, investigators have shown that polyfunctional T cells correlate best with long-term protection, however, it is still unknown how to stimulate T cells to achieve these responses. To study this, we examined the phenotypes and functions of CD8(+) T cells specific for two different virus antigens stimulated ex vivo using either autologous monocyte-derived dendritic cells (moDCs) or HLA-A2-Ig-based artificial APCs (aAPCs). Although similar numbers of influenza virus and measles virus tetramer-positive cells were generated by stimulation with peptide-loaded moDCs and aAPCs, T cell function, assessed by expression of IL-2, IFN-gamma, TNF-alpha, MIP1beta, and CD107a, showed that aAPC-generated CD8(+) T cells were multifunctional, whereas moDC-generated cells were mostly monofunctional. aAPC-generated cells also produced more of each cytokine per cell than CD8(+) T cells generated with moDCs. These phenotypes were not fixed, as changing the culture conditions of expanding T cells from aAPCs to moDCs, and moDCs to aAPCs, reversed the phenotypes. We conclude that CD8(+) T cells are heterogeneous in their functionality and that this is dependent, in a dynamic way, on the stimulating APC. These studies will lead to understanding the factors that influence induction of optimal CD8(+) T cell function.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos Imunodominantes/imunologia , Ativação Linfocitária , Adulto , Apresentação de Antígeno , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Células Dendríticas/imunologia , Antígeno HLA-A2/imunologia , Humanos , Imunoglobulinas/imunologia , Peptídeos/imunologia , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA