Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 14(3): e23665, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35505721

RESUMO

Background The deep inferior epigastric perforator (DIEP) flap has been widely used in breast reconstruction. During surgery, many surgeons use closed suction drainage for both the donor site and the reconstructed breast. However, the criteria for drainage removal depend on the surgeon's preference and remain controversial. Moreover, it is well known that early postoperative showering is harmless to the surgical site and is recommended in many reports. However, it has not been discussed whether it is acceptable for patients with closed suction drainage to take a shower. Methodology We conducted a retrospective study of postoperative showering in 30 patients who underwent breast reconstruction with a DIEP flap. During the surgery, a total of three closed suction drains were connected to the patient's body (one was connected to the reconstructed breast, and the other two were connected to the abdominal donor site). After the surgery, patients were allowed to shower when the number of connected drainage tubes was ≤2. Results The patients were divided into three groups according to the number of remaining drainage tubes connected to their bodies when they started postoperative showering. Group A included patients with no drainage tubes. Group B included patients with one remaining drainage tube. Group C included patients with two drainage tubes. No significant differences in the incidence of postoperative individual complications were observed among the three groups. Conclusions Postoperative showering for patients with closed suction drainage is safe and does not increase the incidence of postoperative complications, including surgical site infection.

2.
J Reconstr Microsurg ; 37(6): 541-550, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33517569

RESUMO

BACKGROUND: Intraoperative vasospasm during reconstructive microvascular surgery is often unpredictable and may lead to devastating flap loss. Therefore, various vasodilators are used in reconstructive microsurgery to prevent and relieve vasospasm. Lidocaine is a vasodilator commonly used in microvascular surgery. Although many reports have described its in vitro and in vivo concentration-dependent vasodilatory effects, limited studies have examined the pharmacological effects of lidocaine on blood vessels in terms of persistence and titer. METHODS: In this study, the vasodilatory effect of lidocaine was examined by using the wire myograph system. Abdominal aortas were harvested from female rats, sliced into rings of 1-mm thickness, and mounted in the wire myograph system. Next, 10, 5, 2, and 1% lidocaine solutions were applied to the artery, and the change in vasodilation force, persistence of the force, and time required to reach equilibrium were measured. RESULTS: The vasodilatory effect was confirmed in all groups following lidocaine treatment. Although strong vasodilation was observed in the 10% lidocaine group, it was accompanied by irreversible degeneration of the artery. Vasodilation in the 1% lidocaine group was weaker than that in the other groups 500 seconds after lidocaine addition (p < 0.05). Between the 5 and 2% lidocaine groups, 5% lidocaine showed a stronger vasodilatory effect 400 to 600 seconds after lidocaine addition (p < 0.01); however, there was no significant difference in these groups after 700 seconds. Additionally, there was no difference in the time required for the relaxation force to reach equilibrium among the 5, 2, and 1% lidocaine groups. CONCLUSION: Although our study confirmed the dose-dependent vasodilatory effect of lidocaine, 5% lidocaine showed the best vasodilatory effect and continuity with minimal irreversible changes in the arterial tissue.


Assuntos
Microcirurgia , Vasodilatadores , Animais , Feminino , Lidocaína/farmacologia , Miografia , Ratos , Vasoconstrição , Vasodilatação , Vasodilatadores/farmacologia
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33318128

RESUMO

The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3- complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.


Assuntos
Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Fenômenos Biofísicos , Digoxina/farmacologia , Modelos Moleculares , Conformação Molecular , Ouabaína/farmacologia , Isoformas de Proteínas , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(31): 18448-18458, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675243

RESUMO

Under physiological conditions, most Ca2+-ATPase (SERCA) molecules bind ATP before binding the Ca2+ transported. SERCA has a high affinity for ATP even in the absence of Ca2+, and ATP accelerates Ca2+ binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca2+-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2·ATP state at 3.0-Å resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1·ATP·2Ca2+ state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca2+-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cristalografia por Raios X , Humanos , Miocárdio/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
5.
J Gen Physiol ; 152(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31841587

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation-contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure-function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/genética , Simulação de Dinâmica Molecular , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Domínios Proteicos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
6.
Proc Natl Acad Sci U S A ; 115(50): 12722-12727, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482857

RESUMO

Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.


Assuntos
Cálcio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Trifosfato de Adenosina/química , Cristalografia por Raios X , Citoplasma/química , Hidrólise , Domínios Proteicos , Prótons , Retículo Sarcoplasmático/química
7.
Bioorg Med Chem Lett ; 28(3): 298-301, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292225

RESUMO

Biselyngbyaside, an 18-membered macrolide glycoside from marine cyanobacteria, and its derivatives are known to be sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Recently, a SERCA orthologue of the malaria parasite, PfATP6, has attracted attention as a malarial drug target. To provide a novel drug lead, we designed new synthetic analogs of biselyngbyolide B, the aglycone of biselyngbyaside, based on the co-crystal structure of SERCA with biselyngbyolide B, and synthesized them using the established synthetic route for biselyngbyolide B. Their biological activities against malarial parasites were evaluated.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Cianobactérias/química , Desenho de Fármacos , Macrolídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , ATPases Transportadoras de Cálcio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrolídeos/síntese química , Macrolídeos/química , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
8.
Hum Mutat ; 37(11): 1231-1241, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27586648

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/genética , Mutação , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Endoplasmático/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipertermia Maligna/metabolismo , Modelos Moleculares , Miopatia da Parte Central/metabolismo , Estrutura Secundária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
9.
Nat Commun ; 6: 8004, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258479

RESUMO

Na(+),K(+)-ATPase transfers three Na(+) from the cytoplasm into the extracellular medium and two K(+) in the opposite direction per ATP hydrolysed. The binding and release of Na(+) and K(+) are all thought to occur sequentially. Here we demonstrate by X-ray crystallography of the ATPase in E2·MgF4(2-)·2K(+), a state analogous to E2·Pi·2K(+), combined with isotopic measurements, that the substitution of the two K(+) with congeners in the extracellular medium indeed occurs at different rates, substantially faster at site II. An analysis of thermal movements of protein atoms in the crystal shows that the M3-M4E helix pair opens and closes the ion pathway leading to the extracellular medium, allowing K(+) at site II to be substituted first. Taken together, these results indicate that site I K(+) is the first cation to bind to the empty cation-binding sites after releasing three Na(+).


Assuntos
Cristalografia por Raios X , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Potássio/química , Ligação Proteica , Tubarões , ATPase Trocadora de Sódio-Potássio/química
10.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25533463

RESUMO

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Fosfatidilserinas/química , Fosfolipídeos/química , Fosfoproteínas/química , ATPase Trocadora de Sódio-Potássio/química , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Cell Rep ; 9(1): 48-60, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284789

RESUMO

The development of cancer is driven not only by genetic mutations but also by epigenetic alterations. Here, we show that TET1-mediated production of 5-hydroxymethylcytosine (5hmC) is required for the tumorigenicity of glioblastoma cells. Furthermore, we demonstrate that chromatin target of PRMT1 (CHTOP) binds to 5hmC. We found that CHTOP is associated with an arginine methyltransferase complex, termed the methylosome, and that this promotes the PRMT1-mediated methylation of arginine 3 of histone H4 (H4R3) in genes involved in glioblastomagenesis, including EGFR, AKT3, CDK6, CCND2, and BRAF. Moreover, we found that CHTOP and PRMT1 are essential for the expression of these genes and that CHTOP is required for the tumorigenicity of glioblastoma cells. These results suggest that 5hmC plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex to selective sites on the chromosome, where it methylates H4R3 and activates the transcription of cancer-related genes.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Citosina/análogos & derivados , Glioblastoma/metabolismo , 5-Metilcitosina/análogos & derivados , Acetilação , Neoplasias Encefálicas/genética , Carcinogênese/genética , Cromatina/genética , Cromatina/metabolismo , Citosina/biossíntese , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Oxigenases de Função Mista , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Nature ; 502(7470): 201-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089211

RESUMO

Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.


Assuntos
Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Rim/enzimologia , Estrutura Terciária de Proteína , Suínos
13.
J Biol Chem ; 287(51): 42826-34, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23132865

RESUMO

The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na(+)/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na(+)/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.


Assuntos
Membrana Celular/metabolismo , Simportadores/química , Simportadores/metabolismo , Colina/metabolismo , Cisteína/genética , Genes Dominantes , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
14.
Protein Sci ; 19(3): 544-57, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20066666

RESUMO

The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.


Assuntos
Fator Natriurético Atrial/química , Cloretos/química , Sequência Conservada , Receptores do Fator Natriurético Atrial/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 106(33): 13742-7, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666591

RESUMO

The sodium-potassium pump (Na(+),K(+)-ATPase) is responsible for establishing Na(+) and K(+) concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na(+),K(+)-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 A resolution in a state analogous to E2.2K(+).Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K(+), in marked contrast to previous models. Due to antagonism between ouabain and K(+), the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity.


Assuntos
Ouabaína/química , Potássio/química , ATPase Trocadora de Sódio-Potássio/química , Adenosina Trifosfatases/química , Sítios de Ligação , Carboidratos/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Cinética , Lactonas/química , Bicamadas Lipídicas , Conformação Molecular , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína
16.
Nature ; 459(7245): 446-50, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19458722

RESUMO

Sodium-potassium ATPase is an ATP-powered ion pump that establishes concentration gradients for Na(+) and K(+) ions across the plasma membrane in all animal cells by pumping Na(+) from the cytoplasm and K(+) from the extracellular medium. Such gradients are used in many essential processes, notably for generating action potentials. Na(+), K(+)-ATPase is a member of the P-type ATPases, which include sarcoplasmic reticulum Ca(2+)-ATPase and gastric H(+), K(+)-ATPase, among others, and is the target of cardiac glycosides. Here we describe a crystal structure of this important ion pump, from shark rectal glands, consisting of alpha- and beta-subunits and a regulatory FXYD protein, all of which are highly homologous to human ones. The ATPase was fixed in a state analogous to E2.2K(+).P(i), in which the ATPase has a high affinity for K(+) and still binds P(i), as in the first crystal structure of pig kidney enzyme at 3.5 A resolution. Clearly visualized now at 2.4 A resolution are coordination of K(+) and associated water molecules in the transmembrane binding sites and a phosphate analogue (MgF(4)(2-)) in the phosphorylation site. The crystal structure shows that the beta-subunit has a critical role in K(+) binding (although its involvement has previously been suggested) and explains, at least partially, why the homologous Ca(2+)-ATPase counter-transports H(+) rather than K(+), despite the coordinating residues being almost identical.


Assuntos
ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Fluoretos/metabolismo , Humanos , Compostos de Magnésio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Potássio/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Glândula de Sal/enzimologia , Tubarões , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
17.
J Biol Chem ; 279(27): 28625-31, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15117952

RESUMO

A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracellular hormone-binding domain in complex with ANP. The structural comparison with the unliganded receptor reveals that hormone binding causes the two receptor monomers to undergo an intermolecular twist with little intramolecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains in the dimer with essentially no change in the interdomain distance. This movement alters the relative orientation of the two domains by a shift equivalent to counterclockwise rotation of each by 24 degrees. These results suggest that transmembrane signaling by the ANP receptor is initiated via a hormone-induced rotation mechanism.


Assuntos
Fator Natriurético Atrial/química , Hormônios/química , Receptores do Fator Natriurético Atrial/química , Transdução de Sinais , Animais , Sítios de Ligação , Cricetinae , Cristalografia por Raios X , Dimerização , Glicosilação , Cinética , Ligantes , Modelos Moleculares , Peptídeos , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
J Biol Chem ; 279(14): 13968-75, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-14699149

RESUMO

2-Methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH 28080) is a reversible inhibitor specific for the gastric proton pump. The inhibition pattern is competitive with K(+). Here we studied the binding sites of this inhibitor on the putative three-dimensional structure of the gastric proton pump alpha-subunit that was constructed by homology modeling based on the structure of sarcoplasmic reticulum Ca(2+) pump. Alanine and serine mutants of Tyr(801) located in the fifth transmembrane segment of the gastric proton pump alpha-subunit retained the (86)Rb transport and K(+)-dependent ATPase (K(+)-ATPase) activities. These mutants showed 60-80-times lower sensitivity to SCH 28080 than the wild type in the (86)Rb transport activity. The K(+)-ATPase activities of these mutants were not completely inhibited by SCH 28080. The sensitivity to SCH 28080 was dependent on the bulkiness of the side chain at this position. Therefore, the side chain of Tyr(801) is important for the interaction with this inhibitor. In the three-dimensional structure of the E(2) form (conformation with high affinity for K(+)) of the gastric proton pump, Tyr(801) faces a cavity surrounded by the first, fourth, fifth, sixth, and eighth transmembrane segments and fifth/sixth, seventh/eighth, and ninth/tenth loops. SCH 28080 can dock in this cavity. However, SCH 28080 cannot dock in the same location in the E(1) form (conformation with high affinity for proton) of the gastric proton pump due to the drastic rearrangement of the transmembrane helices between the E(1) and E(2) forms. These results support the idea that this cavity is the binding pocket of SCH 28080.


Assuntos
Ácido Gástrico/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , Estômago/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Rim/citologia , Dados de Sequência Molecular , Mutagênese , Omeprazol/farmacologia , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/farmacologia , Coelhos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Tirosina/química
19.
J Biol Chem ; 279(7): 6115-23, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14600147

RESUMO

The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.


Assuntos
Receptores do Fator Natriurético Atrial/genética , Animais , Arginina/química , Células COS , Cristalografia por Raios X , GMP Cíclico/metabolismo , DNA Complementar/metabolismo , Dietil Pirocarbonato/química , Dimerização , Histidina/química , Ligação de Hidrogênio , Cinética , Espectrometria de Massas , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Conformação Proteica , Receptores do Fator Natriurético Atrial/química , Transdução de Sinais , Fatores de Tempo , Transfecção , Tripsina/farmacologia , Triptofano/química
20.
Proc Natl Acad Sci U S A ; 99(25): 15977-82, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12461183

RESUMO

Homology modeling of the alpha-subunit of Na+K+-ATPase, a representative member of P-type ion transporting ATPases, was carried out to identify the cation (three Na+ and two K+) binding sites in the transmembrane region, based on the two atomic models of Ca2+-ATPase (Ca2+-bound form for Na+, unbound form for K+). A search for potential cation binding sites throughout the atomic models involved calculation of the valence expected from the disposition of oxygen atoms in the model, including water molecules. This search identified three positions for Na+ and two for K+ at which high affinity for the respective cation is expected. In the models presented, Na+- and K+-binding sites are formed at different levels with respect to the membrane, by rearrangements of the transmembrane helices. These rearrangements ensure that release of one type of cation coordinates with the binding of the other. Cations of different radii are accommodated by the use of amino acid residues located on different faces of the helices. Our models readily explain many mutational and biochemical results, including different binding stoichiometry and affinities for Na+ and K+.


Assuntos
Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA