Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Arch Biochem Biophys ; 711: 109029, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34517011

RESUMO

Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Trimebutina/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Quimiocinas/metabolismo , Feminino , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Trimebutina/uso terapêutico
3.
Int J Hematol ; 113(3): 370-380, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33094474

RESUMO

Patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) have limited treatment options. Venetoclax is a potent BCL-2 inhibitor that induces apoptosis in CLL cells. This open-label, phase 1/2 study (NCT02265731) evaluated the safety, pharmacokinetics, and efficacy of venetoclax in Japanese patients with R/R CLL/SLL. Patients enrolled in phase 1 received 400 mg/day venetoclax monotherapy. Patients enrolled in phase 2 received 400 mg/day venetoclax, plus rituximab. Venetoclax was administered with a weekly stepwise ramp-up in doses. In phase 2, efficacy was evaluated by objective response rate (ORR). Twelve patients were enrolled, six in each arm. The most common grade ≥ 3 adverse events were neutropenia (83%), lymphopenia (67%), leukopenia (33%), and thrombocytopenia (17%). Patients receiving venetoclax monotherapy achieved an ORR of 100%, including a complete remission (CR) rate of 17%. Patients receiving combination therapy had an ORR of 67% and a CR rate of 50%. The venetoclax pharmacokinetics profile in Japanese patients was similar to that of Western patients. Venetoclax 400 mg/day monotherapy or in combination with rituximab was well-tolerated and induced promising responses in Japanese patients with R/R CLL/SLL. Although patient numbers were small, the safety profile was largely consistent with other Western studies. Clinical trial registration: clinicaltrials.gov; NCT02265731.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Feminino , Doenças Hematológicas/induzido quimicamente , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Intervalo Livre de Progressão , Rituximab/administração & dosagem , Rituximab/efeitos adversos , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacocinética , Resultado do Tratamento
4.
Biochem Biophys Res Commun ; 533(4): 1155-1161, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33041002

RESUMO

We previously identified papaverine as an inhibitor of receptor for advanced glycation end-products (RAGE) and showed its suppressive effect on high mobility group box 1 (HMGB1)-mediated responses to inflammation. Here, we found trimebutine to be a 3D pharmacophore mimetics of papaverine. Trimebutine was revealed to have more potent suppressive effects on HMGB1-induced production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in macrophage-like RAW264.7 cells and mouse bone marrow primarily differentiated macrophages than did papaverine. However, the inhibitory effect of trimebutine on the interaction of HMGB1 and RAGE was weaker than that of papaverine. Importantly, mechanism-of-action analyses revealed that trimebutine strongly inhibited the activation of RAGE downstream inflammatory signaling pathways, especially the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are mediator/effector kinases recruited to the intracellular domain of RAGE. Consequently, the activation of Jun amino terminal kinase, which is an important effector kinase for the up-regulation of pro-inflammatory cytokines, was inhibited. Taken together, these results suggest that trimebutine may exert its suppressive effect on the HMGB1-RAGE inflammatory signal pathways by strongly blocking the recruitment of ERK1/2 to the intracellular tail domain of RAGE in addition to its weak inhibition of the extracellular interaction of HMGB1 with RAGE. Thus, trimebutine may provide a unique scaffold for the development of novel dual inhibitors of RAGE for inflammatory diseases.


Assuntos
Proteína HMGB1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Trimebutina/farmacologia , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Macrófagos , Camundongos , Papaverina/química , Papaverina/farmacologia , Células RAW 264.7 , Trimebutina/química , Fator de Necrose Tumoral alfa/metabolismo
5.
Biochem Biophys Res Commun ; 511(3): 665-670, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826057

RESUMO

The interaction of high mobility group box 1 (HMGB1), which is secreted from immune and dying cells during cellular infection and injury, and receptor for advanced glycation end-products (RAGE) appears to be critical for acute and chronic inflammatory disorders. Here we designed a unique cyclic ß-hairpin peptide (Pepb2), which mimics the predicted RAGE-binding domain of HMGB1. Pepb2 competitively inhibited HMGB1/RAGE interaction. We then identified papaverine as a Pepb2 mimetic by in silico 3D-structural similarity screening from the DrugBank library. Papaverine was found to directly inhibit HMGB1/RAGE interaction. It also suppressed the HMGB1-mediated production of pro-inflammatory cytokines, IL-6 and TNF-α, in mouse macrophage-like RAW264.7 cells and bone marrow-derived macrophages. In addition, papaverine attenuated mortality in cecal ligation puncture-induced sepsis model mice. Taken together, these findings indicate that papaverine could become a useful therapeutic against HMGB1/RAGE-mediated sepsis and other inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Inflamação/tratamento farmacológico , Papaverina/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Sepse/tratamento farmacológico , Animais , Feminino , Proteína HMGB1/imunologia , Inflamação/complicações , Inflamação/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/imunologia , Sepse/complicações , Sepse/imunologia , Fator de Necrose Tumoral alfa/imunologia
6.
Sci Rep ; 7: 44672, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294184

RESUMO

Mouthguards (MGs) made from poly(ethylene-co-vinyl acetate) (EVA) are widely used in contact sports to prevent injuries such as breaking teeth and lip lacerations and to reduce brain concussion. However, the changes in morphology and the molecular mobility of EVA, which can affect its physical properties during practical usage, have not been precisely examined. Therefore, we attempted to determine the main factors which lead to changes in MG performance after one season of practical use by high school rugby players. Solid-state nuclear magnetic resonance (NMR) and pulse NMR measurements showed the hardening of MGs, which was associated with an increased crystallinity of the EVA resulting from prolonged usage. Furthermore, our data indicated that the increase in the relative amount of the crystalline phase may be primarily attributed to temperature fluctuations and repeated changes in pressure, which could cause the hardening of EVA and eventually diminish the protective ability of MGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA