Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 832989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371018

RESUMO

Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.


Assuntos
Cinurenina , Neoplasias , Animais , Citocinas , Dipeptidil Peptidase 4/genética , Humanos , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Masculino , Mamíferos/metabolismo , Antígeno Prostático Específico , Serina Proteases , Proteína Estafilocócica A , Subtilisina
2.
Proc Natl Acad Sci U S A ; 116(43): 21666-21672, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597740

RESUMO

Regulatory T (Treg) cells expressing the transcription factor Foxp3 play an important role in maintaining immune homeostasis. Chronic inflammation is associated with reduced Foxp3 expression, function, and loss of phenotypic stability. Previous studies have established the importance of TNF receptor 2 (TNFR2) in the generation and/or activation of Treg cells. In this study, we assess the importance of TNFR2 in healthy mice and under inflammatory conditions. Our findings reveal that, in health, TNFR2 is important not only for the generation of Treg cells, but also for regulating their functional activity. We also show that TNFR2 maintains Foxp3 expression in Treg cells by restricting DNA methylation at the Foxp3 promoter. In inflammation, loss of TNFR2 results in increased severity and chronicity of experimental arthritis, reduced total numbers of Treg cells, reduced accumulation of Treg cells in inflamed joints, and loss of inhibitory activity. In addition, we demonstrate that, under inflammatory conditions, loss of TNFR2 causes Treg cells to adopt a proinflammatory Th17-like phenotype. It was concluded that TNFR2 signaling is required to enable Treg cells to promote resolution of inflammation and prevent them from undergoing dedifferentiation. Consequently, TNFR2-specific agonists or TNF1-specific antagonists may be useful in the treatment of autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Metilação de DNA/genética , Fatores de Transcrição Forkhead/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Regiões Promotoras Genéticas/genética
3.
Sci Adv ; 5(5): eaaw5422, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31049403

RESUMO

IL-17 and TNF-α are major effector cytokines in chronic inflammation. TNF-α inhibitors have revolutionized the treatment of rheumatoid arthritis (RA), although not all patients respond, and most relapse after treatment withdrawal. This may be due to a paradoxical exacerbation of TH17 responses by TNF-α inhibition. We examined the therapeutic potential of targeting cellular inhibitors of apoptosis 1 and 2 (cIAP1/2) in inflammation by its influence on human TH subsets and mice with collagen-induced arthritis. Inhibition of cIAP1/2 abrogated CD4+ IL-17A differentiation and IL-17 production. This was a direct effect on T cells, mediated by reducing NFATc1 expression. In mice, cIAP1/2 inhibition, when combined with etanercept, abrogated disease activity, which was associated with an increase in Tregs and was sustained after therapy retraction. We reveal an unexpected role for cIAP1/2 in regulating the balance between TH17 and Tregs and suggest that combined therapeutic inhibition could induce long-term remission in inflammatory diseases.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/imunologia , Autoimunidade/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Interleucina-17/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Células Cultivadas , Dipeptídeos/farmacologia , Regulação para Baixo , Sinergismo Farmacológico , Humanos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células Th17/imunologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico
4.
PLoS Pathog ; 10(4): e1004061, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699819

RESUMO

Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but also the loss of membrane receptors, adhesion molecules and T-cell cytokines that drive the aetiology of Buruli ulcer.


Assuntos
Retículo Endoplasmático/metabolismo , Mediadores da Inflamação/metabolismo , Macrolídeos/metabolismo , Mycobacterium ulcerans/patogenicidade , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Mycobacterium ulcerans/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA