Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 25: 220-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38260087

RESUMO

Background: Breast reconstruction is crucial for patients who have undergone mastectomy for breast cancer. Our bioabsorbable implants comprising an outer poly-l-lactic acid mesh and an inner component filled with collagen sponge promote and retain adipogenesis in vivo without the addition of exogenous cells or growth factors. In this study, we evaluated adipogenesis over time histologically and at the gene expression level using this implant in a rodent model. Methods: The implants were inserted in the inguinal and dorsal regions of the animals. At 1, 3, 6, and 12 months post-operation, the weight, volume, and histological assessment of all newly formed tissue were performed. We analyzed the formation of new adipose tissue using multiphoton microscopy and RNA sequencing. Results: Both in the inguinal and dorsal regions, adipose tissue began to form 1 month post-operation in the peripheral area. Angiogenesis into implants was observed until 3 months. At 6 months, microvessels matured and the amount of newly generated adipose tissue peaked and was uniformly distributed inside implants. The amount of newly generated adipose tissue decreased from 6 to 12 months but at 12 months, adipose tissue was equivalent to the native tissue histologically and in terms of gene expression. Conclusions: Our bioabsorbable implants could induce normal adipogenesis into the implants after subcutaneous implantation. Our implants can serve as a novel and safe material for breast reconstruction without requiring exogenous cells or growth factors.

2.
Regen Ther ; 24: 324-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649673

RESUMO

Introduction: The regeneration of adipose tissue in patients after breast cancer surgery would be desirable without the use of growth factors or cells to avoid potential recurrence and metastasis. We reported that prolate spheroidal-shaped poly-L-lactic acid (PLLA) mesh implants of approximately 18-mm polar diameter and 7.5-mm greatest equatorial diameter containing collagen sponge (CS) would be replaced by regenerated adipose tissue after implantation, thereby suggesting an innovative method for breast reconstruction. Our study aimed to evaluate the adipose tissue regeneration ability of implant aggregates in a porcine model. Methods: We prepared implant aggregates consisting of thirty PLLA mesh implants containing CS packed in a woven poly (glycolic acid) bag. The implant aggregates were inserted under the mammary glands in the porcine abdomen for a year. Single and double groups were classified by inserting either one or two implant aggregates on each side of the abdomen, respectively. Results: In both groups, the volume of the implant aggregates decreased over time, and the formation of adipose tissue peaked between 6 and 9 months. Histologically, the formation of adipose tissue was confirmed in the area that was in contact with native adipose tissue. Conclusions: Our implant aggregates could induce the autologous adipose tissue after long term implantation in vivo, without the use of any growth factor or cell treatment, presenting a potential novel method of breast reconstruction.

3.
Plast Reconstr Surg Glob Open ; 11(2): e4812, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751507

RESUMO

Basal cell carcinoma (BCC), which is relatively easy to diagnose in a clinical setting, is the most common malignant tumor in the skin. Conversely, a giant BCC, a tumor beyond 5 cm in diameter, is a rare disease. In particular, a giant BCC beyond 20 cm in diameter is called a super-giant BCC, which frequently invades into deeper tissues, including the dermis, bones, or muscles. Here, we present a case of a 71-year-old patient who was initially diagnosed with multiple traumas with a large periosteal defect of the head. The ulcer was surrounded by malodorous necrotic tissue and slough, and several bacteria that caused necrotizing fasciitis were detected. Mapping biopsies after extensive debridement yielded BCC, and therefore, he was finally diagnosed with a super-giant BCC. A careful consultation revealed a history of ulcer on the head after a head injury approximately 10 years ago. He underwent radical dissection including the external table of the skull, followed by a free latissimus dorsi muscle flap with a meshed split-thickness skin graft. Because of the slow and chronic development of a super-giant BCC, accurate diagnosis is often difficult. Careful attention should be paid in patients with long-sustained ulcers.

4.
J Artif Organs ; 25(3): 245-253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35235081

RESUMO

Our bioabsorbable poly-L-lactic acid (PLLA) mesh implants containing collagen sponge are replaced with adipose tissue after implantation, and this is an innovative method for breast reconstruction. In this preliminary study, we investigated the formation of adipose tissue and evaluated the process via multimodal images in a porcine model using an implant aggregate to generate the larger adipose tissue. The implant aggregate consists of PLLA mesh implants containing collagen sponge and a poly-glycolic acid woven bag covering them. We inserted the implant aggregates under the porcine mammary glands. Magnetic resonance imaging (MRI), ultrasonography (USG), and 3-dimensional (3D) surface imaging and histological evaluations were performed to evaluate the formation of adipose tissue over time. The volume of the implant aggregate and the formed adipose tissue inside the implant aggregate could be evaluated over time via MRI. The space within the implant aggregate was not confirmed on USG due to the acoustic shadow of the PLLA threads. The change in volume was not confirmed precisely using 3D surface imaging. Histologically, the newly formed adipose tissue was confirmed on the skin side of the implant aggregate. This implant aggregate has the ability to regenerate adipose tissue, and MRI is an appropriate method for the evaluation of the volume of the implant aggregation and the formation of adipose tissue.


Assuntos
Implantes Absorvíveis , Adipogenia , Tecido Adiposo , Animais , Colágeno , Imageamento por Ressonância Magnética , Suínos
5.
Regen Ther ; 18: 217-222, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34377751

RESUMO

INTRODUCTION: Giant congenital melanocytic nevus (GCMN) is a large melanocytic nevus, and its full-thickness removal is usually difficult due to the lack of skin available for reconstruction. Curettage is an alternative approach in cases of GCMN to remove the superficial dermis above the cleavage plane with a curette in the neonatal period, and its major complications include repigmentation, retarded epithelization, and hypertrophic scar formation. In Japan, the JACE® cultured epidermal autograft (CEA) was approved and covered by public healthcare insurance for the treatment of congenital melanocytic nevus (CMN) that is difficult to treat with conventional methods in 2016. We have used CEA for wounds after curettage in the neonatal period or following ablation after the neonatal period in combination with laser therapies to reduce the above-mentioned complications. METHODS: In this study, we summarized all consecutive CMN patients treated using CEA from December 2016 to April 2019 and evaluated the duration required for epithelialization, incidence of hypertrophic scar, and color change in the target nevus by comparing the L∗ values one year later between the Curettage group, the non-Curettage group with initial treatment or the subsequent group. RESULTS: No significant differences were seen in the epithelization period or incidence of hypertrophic scars among the groups, but the color of the target nevus was improved significantly in the Curettage group (p < 0.01) and non-Curettage group with initial treatment (p < 0.01). CONCLUSIONS: In conclusion, CEA seems to accelerate epithelization after curettage or ablation of CMN, and this treatment could improve the color of CMN when applied initially.

7.
Biomed Res Int ; 2021: 3485189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681354

RESUMO

BACKGROUND: Giant congenital melanocytic nevi (GCMN) treatment remains controversial. While surgical resection is the best option for complete removal, skin shortage to reconstruct the skin defect remains an issue. We report a novel treatment using a high hydrostatic pressurization (HHP) technique and a cryopreservation procedure. However, cryopreservation may inhibit revascularization of implanted nevus tissue and cultured epidermal autograft (CEA) take. We aimed to investigate the influence of the cryopreservation procedure on the HHP-treated dermis specimen and CEA take on cryopreserved tissue. METHODS: Nevus tissue harvested from a patient with GCMN was inactivated with HHP of 200 MPa and then cryopreserved at -30°C for 28 days. The cryopreserved specimen was compared with fresh (HHP-treated without cryopreservation) tissue and with untreated (without HHP treatment) tissue to evaluate the extracellular matrix, basal membranes, and capillaries. Cultured epidermis (CE) take on the cryopreserved tissue was evaluated following implantation of the cryopreserved nevus tissue with CE into the subcutis of nude mice. RESULTS: No difference was observed between cryopreserved and fresh tissue in terms of collagen or elastic fibers, dermal capillaries, or basement membranes at the epidermal-dermal junction. In 4 of 6 samples (67%), applied CE took on the nevus tissues and regenerated the epidermis in the cryopreserved group compared with 5 of 6 samples (83%) in the fresh group. CONCLUSION: Cryopreservation at -30°C for 28 days did not result in significant damage to inactivated nevus tissue, and applied CE on the cryopreserved nevus tissues took and regenerated the epidermis. Inactivated nevus tissue with HHP can be used as a dermal substitute after 28-day cryopreservation.


Assuntos
Criopreservação , Derme , Nevo/química , Neoplasias Cutâneas/química , Pele Artificial , Animais , Humanos , Pressão Hidrostática , Masculino , Camundongos , Camundongos Nus
8.
Stem Cell Rev Rep ; 17(2): 662-672, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128169

RESUMO

Among promising solutions for tissue repair and wound healing, mesenchymal stem (or stromal) cells (MSCs) have been a focus of attention and have become the most clinically studied experimental cell therapy. Recent studies reported the importance of apoptosis in MSC-mediated immunomodulation, in which apoptotic MSCs (apoMSCs) were shown to be superior to living MSCs. Nowadays, high hydrostatic pressure (HHP), a physical technique that uses only fluid pressure, has been developed and applied in various bioscience fields, including biotechnology, biomaterials, and regenerative medicine, as its safe and simply operation. In the current study, we investigated the impact of HHP treatment on human bone marrow-MSC survival and proliferation. Based on the detection of executioner caspase activation, phosphatidylserine exposure, DNA fragmentation (TUNEL) and irrefutable ultrastructural morphological changes on transmission electron microscopy (TEM), our data revealed that HHP treatment induced complete apoptosis in MSCs. Notably, this technique might provide manipulated products for use in cell-based therapies as manufacturing capability expands. We hope that our findings will contribute to the improvement of MSCs or EVs in translational research development. Graphical Abstract.


Assuntos
Apoptose , Pressão Hidrostática , Células-Tronco Mesenquimais , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
9.
J Tissue Eng Regen Med ; 14(7): 920-930, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293793

RESUMO

Adipose tissue regeneration in breast cancer patients without additional growth factors or adipose-tissue-derived stromal cells is desirable because of the possibility of recurrence and metastasis. We report that a poly-L-lactic acid (PLLA) mesh implant containing a collagen sponge (CS) maintained the internal space in vivo for up to 12 months and substituted for adipose tissue. We developed a PLLA capsule that maintained the internal space longer than that of PLLA mesh and compared adipose tissue formation at 12 and 24 months after implantation between the PLLA mesh with CS implant and the PLLA capsule implant with or without CS in a rabbit model. After 12 months, all implants maintained the internal space, and the adipose tissue that formed in all implant groups was larger than that in the control group. At 24 months, PLLA mesh maintained the internal space just as well as that at 12 months, while the PLLA capsule collapsed and accumulated a large number of macrophages. The formed adipose tissue in the PLLA mesh group was maintained up to 24 months; however, those in two PLLA capsule groups decreased and showed no difference from the control group. In conclusion, the internal space of the PLLA mesh implant with CS was substituted for adipose tissue at 12 months and sustained the formed adipose tissue after 24 months. The PLLA mesh implant containing CS is a desirable bioabsorbable implant that can be replaced by autologous adipose tissue after implantation in vivo without using any growth factors or cells.


Assuntos
Implantes Absorvíveis , Adipogenia , Tecido Adiposo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Poliésteres , Telas Cirúrgicas , Animais , Masculino , Coelhos
10.
J Surg Case Rep ; 2020(2): rjz402, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128110

RESUMO

Plantar fibromatosis (PF) is a rare benign disease. Here we report bilateral PF accompanied by Dupuytren's contracture in the right palm. Magnetic resonance imaging was useful in diagnosing PF, although biopsy was needed to rule out hemangioma. As the patient had been receiving female hormone therapy since orchiectomy, there may be a possibility that estrogen accelerated the growth of PF. Local excision with a 1-cm margin was performed, followed by primary wound closure. Neither complication nor recurrence had occurred 6 months after the surgery.

11.
Biomaterials ; 161: 270-278, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29425847

RESUMO

To enhance the therapeutic effect of growth factors, a powerful strategy is to direct their localization to damaged sites. To treat skin wounds and myocardial infarction, we selected vascular endothelial growth factor (VEGF) carrying binding affinity to collagen. A simple conjugation of a reported collagen-binding sequence and VEGF did not increase the collagen-binding affinity, indicating that the molecular interaction between the two proteins abolished collagen binding activity. Here, we present a new molecular evolution strategy, "all-in-one" in vitro selection, in which a collagen-binding VEGF (CB-VEGF) was directly identified from a random library consisting of random and VEGF sequences. As expected, the selected CB-VEGFs exhibited high binding affinity to collagen and maintained the same growth enhancement activity for endothelial cells as unmodified VEGF in solution. Furthermore, the selected CB-VEGF enhanced angiogenesis at skin wounds and infarcted myocardium. This study demonstrates that "all-in-one" in vitro selection is a novel strategy for the design of functional proteins for regenerative medicine.


Assuntos
Colágeno/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Infarto do Miocárdio/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Cicatrização/efeitos dos fármacos
12.
J Tissue Eng Regen Med ; 12(3): 633-641, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28548695

RESUMO

Recently, adipose tissue has been regenerated by combining scaffolds, growth factors, and/or adipose-tissue-derived stromal cells. However, the safety of growth factors and adipose-tissue-derived stromal cells has not been confirmed in cancer patients. We reported the regeneration of adipose tissue in the internal space of a polypropylene mesh containing a collagen sponge (CS), without using any growth factors or cells. We herein explored the formation of adipose tissue, using the bioabsorbable implant containing CS, in rats. We prepared the implants without and with CS, using threads of either poly-l-lactide-co-ε-caprolactone or poly-l-lactic acid (PLLA), and measured their strengths. The procedure was performed in the rat inguinal region. In the control group, no operative procedure was performed. In the sham-operation group, skin incision without implantation was performed. The other groups received CS alone and the 2 implants with and without CS. The areas of formed tissue and adipose tissue inside the implants and the remnants of CS were evaluated. All implants maintained the internal space before implantation. At 6 and 12 months after implantation, the internal space was maintained and the formation of adipose tissue was promoted in the 2 PLLA groups. At 6 months, the internal space was maintained, and more adipose tissue was formed in the PLLA-with-CS group than in the PLLA group. Porcine collagen was absorbed within 3 months. The PLLA implant with CS is a novel bioabsorbable implant that is replaced with autologous adipose tissue after implantation.


Assuntos
Implantes Absorvíveis , Tecido Adiposo/fisiologia , Adulto , Animais , Colágeno Tipo I/metabolismo , Força Compressiva , Humanos , Implantes Experimentais , Masculino , Pessoa de Meia-Idade , Pressão , Ratos Endogâmicos F344 , Suínos , Fatores de Tempo , Dispositivos para Expansão de Tecidos
13.
PLoS One ; 12(11): e0186958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091921

RESUMO

We report a novel treatment for giant congenital melanocytic nevi (GCMN) that involves the reuse of resected nevus tissue after high hydrostatic pressurization (HHP). However, the remaining melanin pigments in the inactivated nevus tissue pose a problem; therefore, we performed a long-term observation of the color change of inactivated nevus tissue after HHP. Pressurized nevus specimens (200 MPa group, n = 9) and non-pressurized nevus tissues (control group, n = 9) were subcutaneously implanted into nude mice (BALB/c-nu) and then harvested 3, 6, and 12 months later. Color changes of the nevus specimens were evaluated. In the 200 MPa group, the specimen color gradually regressed and turned white, and brightness values were significantly higher in the 200 MPa group than in the control group after 6 months. This indicated that melanin pigments in the pressurized nevus tissue had spontaneously degraded and regressed. Therefore, it is not necessary to remove melanin pigments in HHP-treated nevus tissue.


Assuntos
Melaninas/metabolismo , Nevo Pigmentado/metabolismo , Pigmentos Biológicos/metabolismo , Neoplasias Cutâneas/metabolismo , Humanos , Pressão Hidrostática
14.
Ann Plast Surg ; 78(6): 651-658, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28230648

RESUMO

INTRODUCTION: As the take rate of cultured epidermal autografts in burn wound treatment is variable, widely expanded meshed auto skin grafts are often used in combination with cultured epidermal autograft to increase the take rate and achieve definitive wound coverage. However, a long time (3-4 weeks) required to prepare a cultured epidermis sheet is a disadvantage. Allogeneic cultured epidermis can be prepared in advance and cryopreserved to be used in combination with auto meshed skin grafts for treating third-degree burns. Nevertheless, the human cultured epidermis (hCE) has not been proved to accelerate wound healing after meshed skin grafting. Here, we investigated the effect of hCE on wound healing in a rat model of meshed skin grafting. MATERIALS AND METHODS: Human cultured epidermis was prepared from human neonatal foreskin and assessed by the release of growth factors into the culture medium using enzyme-linked immunosorbent assay. Skin wounds were inflicted on male F344 rats and treated by the application of widely meshed (6:1 ratio) autogenous skin grafts with or without hCE (n = 8 rats per group). Wound area, neoepithelium length, granulation tissue formation, and neovascularization were evaluated on day 7 postgrafting. RESULTS: Human cultured epidermis secreted IL-1α, Basic fibroblast growth factor, platelet-derived growth factor-AA, TGF-α, TGF-ß1, and vascular endothelial growth factor in vitro. In rats, hCE accelerated wound closure (P = 0.003), neoepithelium growth (P = 0.019), and granulation tissue formation (P = 0.043), and increased the number of capillaries (P = 0.0003) and gross neovascularization area (P = 0.008) compared with the control group. CONCLUSIONS: The application of hCE with meshed grafts promoted wound closure, possibly via secretion of growth factors critical for cell proliferation and migration, suggesting that hCE can enhance the healing effect of widely expanded skin autografts.


Assuntos
Queimaduras/cirurgia , Células Epidérmicas , Tecido de Granulação/citologia , Reepitelização/fisiologia , Transplante de Pele/métodos , Animais , Autoenxertos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Ratos , Ratos Endogâmicos F344 , Cicatrização/fisiologia
15.
Ann Plast Surg ; 76(6): 652-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27176561

RESUMO

OBJECTIVE: The manual application of hot water or hot metal to an animal's skin surface is often used to prepare burn wound models. However, manual burn creation is subject to human variability. We developed a new device that can control the temperature, time, and pressure of contact to produce precise and reproducible animal burn wounds and investigated the conditions required to prepare various burn wounds using our new device. METHODS: We prepared burn wounds on F344 rats using 3 contact times 2, 4, and 10 seconds using a stamp heated to 80°C. We observed the wound-healing process macroscopically and histologically and evaluated the burn depth using a laser speckle contrast-imaging device, which evaluated the blood flow of the wound. RESULTS: The changes in the burned area over time, tissue perfusion of the burn wounds, histological evaluation of the burn depth by hematoxylin-eosin and azocarmine and aniline blue staining, and the epithelialization rate (the ratio of the epithelialized area to the wound length) were evaluated on histological sections. Results indicated that the burn wounds prepared with contact times of 2, 4, and 10 seconds corresponded to superficial dermal burns, deep dermal burns, and full-thickness burns, respectively. CONCLUSIONS: We demonstrated that partial- and full-thickness burn wounds can be precisely and reproducibly created with our new automated burning device.


Assuntos
Queimaduras/etiologia , Equipamentos e Provisões Elétricas , Temperatura Alta/efeitos adversos , Modelos Animais , Ratos Endogâmicos F344/lesões , Pele/lesões , Animais , Queimaduras/diagnóstico por imagem , Queimaduras/patologia , Masculino , Ratos , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Pele/patologia , Fatores de Tempo
16.
Biomed Res Int ; 2016: 4567146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27218103

RESUMO

The objective of this study was to compare the effectiveness of the collagen-gelatin sponge (CGS) with that of the collagen sponge (CS) in dermis-like tissue regeneration. CGS, which achieves the sustained release of basic fibroblast growth factor (bFGF), is a promising material in wound healing. In the present study, we evaluated and compared CGSs and conventional CSs. We prepared 8 mm full-thickness skin defects on the backs of rats. Either CGSs or CSs were impregnated with normal saline solution (NSS) or 7 µg/cm(2) of bFGF solution and implanted into the defects. At 1 and 2 weeks after implantation, tissue specimens were obtained from the rats of each group (n = 3, total n = 24). The wound area, neoepithelial length, dermis-like tissue area, and the number and area of capillaries were evaluated at 1 and 2 weeks after implantation. There were no significant differences in the CGS without bFGF and CS groups. Significant improvements were observed in the neoepithelial length, the dermis-like tissue area, and the number of newly formed capillaries in the group of rats that received CGSs impregnated with bFGF. The effects on epithelialization, granulation, and vascularization of wound healing demonstrated that, as a scaffold, CGSs are equal or superior to conventional CSs.


Assuntos
Colágeno/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Regeneração Tecidual Guiada , Cicatrização/efeitos dos fármacos , Animais , Células Epiteliais/efeitos dos fármacos , Gelatina/uso terapêutico , Ratos , Pele/efeitos dos fármacos , Pele/crescimento & desenvolvimento , Pele/patologia
17.
J Surg Res ; 201(2): 378-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27020822

RESUMO

BACKGROUND: Gelatin has been used as a material sustaining the release of basic fibroblast growth factor (bFGF), which promotes fibroblast proliferation and capillary formation and accelerates wound healing. In the application of these materials, bFGF is impregnated immediately before application, and it is difficult to conform the shape to the wound. In this study, we prepared a pliable and plastic gelatin gel sheet (GGS) that sustains bFGF and conforms to the shape of the wound as a result of cross-linking just before application. In addition, we examined the sustained release profile of bFGF from GGS and its effect on wound healing in murine skin defects. MATERIALS AND METHODS: A 13-wt% gelatin solution was mixed with bFGF before cross-linking with 1% glutaraldehyde solution. GGSs impregnated with 7 µg/cm(2) of bFGF were incubated in phosphate-buffered saline and collagenase solution, and GGS degradation and bFGF release were evaluated. In the murine experiments, GGSs treated without bFGF and GGSs impregnated with 1, 3.5, 7, or 14 µg/cm(2) of bFGF were applied to full-thickness skin defects created on the backs of C57BL/6JJcl mice, and the wound closure, epithelial length, extent of granulation tissue and capillary formation were compared. RESULTS: bFGF was released according to the degradation of GGS in phosphate-buffered saline, and the remaining bFGF was released in collagenase solution. In the animal studies, epithelialization was accelerated in the GGSs treated with 1 and 3.5 µg/cm(2) of bFGF, and granulation tissue formation and angiogenesis were promoted based on the amount of bFGF impregnated into the GGS. CONCLUSIONS: GGS impregnated with bFGF is capable of sustaining the release of bFGF, with consequent accelerated epithelialization, granulation tissue formation, and angiogenesis in vivo. GGS is a novel and promising wound dressing that sustains bFGF and can be adapted to the shape of various wounds in the treatment of both acute and chronic wounds.


Assuntos
Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Preparações de Ação Retardada , Avaliação Pré-Clínica de Medicamentos , Elasticidade , Gelatina , Masculino , Camundongos Endogâmicos C57BL , Pele/patologia , Ferimentos e Lesões/patologia
18.
J Artif Organs ; 19(2): 167-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26497310

RESUMO

Nicotine has been reported to prolong the wound healing; however, we showed that the topical application of 10(-4) M nicotine promoted murine wound healing. The objective of this study was to explore the wound healing effects of nicotine in combination with collagen scaffold using skin defects in rabbit. Three full-thickness skin defects 8 mm in diameter were made on the rabbit auricle. Artificial dermis was applied to the defects, and 10 µl of nicotine solution (10(-5), 10(-4), and10(-3) M), bFGF solution (0.5 µg/10 µl), and both bFGF and 10(-4) M nicotine solutions were injected into the artificial dermis once daily for 7 days. Rabbits were sacrificed on day 10, 15, or 20, and the wound healing process was evaluated. bFGF was superior in the formation of the dermis-like tissue and capillaries. In nicotine groups, the epithelial length and the dermis-like tissue formations in the 10(-4) M group were superior, in contrast, those were inhibited in the 10(-3) M group. The synergistic effect of bFGF and 10(-4) M nicotine was not confirmed. This study suggests that the topical application of 10(-4) M nicotine promoted wound healing in rabbit, but the effect was not apparent compared with murine models.


Assuntos
Estimulantes Ganglionares/administração & dosagem , Nicotina/administração & dosagem , Pele Artificial , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Colágeno/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Masculino , Camundongos , Coelhos , Pele/irrigação sanguínea , Alicerces Teciduais
19.
Tissue Eng Part C Methods ; 21(11): 1178-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26121117

RESUMO

Giant congenital melanocytic nevi are intractable lesions associated with a risk of melanoma. High hydrostatic pressure (HHP) technology is a safe physical method for producing decellularized tissues without chemicals. We have reported that HHP can inactivate cells present in various tissues without damaging the native extracellular matrix (ECM). The objectives of this study were to inactivate human nevus tissue using HHP and to explore the possibility of reconstructing skin using inactivated nevus in combination with cultured epidermis (CE). Human nevus specimens 8 mm in diameter were pressurized by HHP at 100, 200, 500, and 1000 MPa for 10 min. The viability of specimens just after HHP, outgrowth of cells, and viability after cultivation were evaluated to confirm the inactivation by HHP. Histological evaluation using hematoxylin-eosin staining and immunohistochemical staining for type IV collagen was performed to detect damage to the ECM of the nevus. The pressurized nevus was implanted into the subcutis of nude mice for 6 months to evaluate the retention of human cells. Then, human CE was applied on the pressurized nevus and implanted into the subcutis of nude mice. The viability of pressurized nevus was not detected just after HHP and after cultivation, and outgrowth of fibroblasts was not observed in the 200, 500, and 1000 MPa groups. Human cells were not observed after 6 months of implantation in these groups. No apparent damage to the ECM was detected in all groups; however, CE took on nevus in the 200 and 500 MPa groups, but not in the 1000 MPa group. These results indicate that human nevus tissue was inactivated by HHP at more than 200 MPa; however, HHP at 1000 MPa might cause damage that prevents the take of CE. In conclusion, all cells in nevus specimens were inactivated after HHP at more than 200 MPa and this inactivated nevus could be used as autologous dermis for covering full-thickness skin defects after nevus removal. HHP between 200 and 500 MPa will be optimal to reconstruct skin in combination with cultured epidermal autograft without damage to the ECM.


Assuntos
Pressão Hidrostática , Nevo Pigmentado/terapia , Regeneração , Neoplasias Cutâneas/terapia , Pele/patologia , Animais , Células Cultivadas , Colágeno Tipo IV/metabolismo , Epiderme/patologia , Fibroblastos/citologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nevo Pigmentado/patologia , Implantação de Prótese , Neoplasias Cutâneas/patologia , Sobrevivência de Tecidos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA