Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 357: 114601, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179122

RESUMO

Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen's role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers.


Assuntos
Galinhas , Plumas , Caracteres Sexuais , Animais , Plumas/metabolismo , Galinhas/metabolismo , Masculino , Feminino , Hormônios Tireóideos/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia
2.
Mol Cell Endocrinol ; 577: 112044, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580010

RESUMO

Tissue kallikrein 1 (Klk1) is a serine protease that degrades several proteins including insulin-like growth factor binding protein-3 and extracellular matrix molecules. Klk1 mRNA expression in the mouse uterus was increased by estradiol-17ß (E2). The present study aimed to clarify the regulatory mechanism for Klk1 expression by estrogen. The promoter analysis of the 5'-flanking region of Klk1 showed that the minimal promoter of Klk1 existed in the -136/+24 region, and the estrogen-responsive region in the -433/-136 region. Tamoxifen increased Klk1 mRNA expression and the promoter activity, suggesting the involvement of AP-1 sites. Site-directed mutagenesis for the putative AP-1 sites in the -433/-136 region showed that the two putative AP-1 sites were involved in the regulation of Klk1 expression. Binding of estrogen receptor α (ERα) to the -433/-136 region was revealed by Chip assay. These results indicated that ERα bound the two putative AP-1 sites and transactivated Klk1 in the mouse uterus.

3.
Gen Comp Endocrinol ; 306: 113752, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711314

RESUMO

The adrenomedullin (AM) family is involved in diverse biological functions, including cardiovascular regulation and body fluid homeostasis, in multiple vertebrate lineages. The AM family consists of AM1, AM2, and AM5 in tetrapods, and the receptor for mammalian AMs has been identified as the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3. However, the receptors for AM in amphibians have not been identified. In this study, we identified the cDNAs encoding calcrl (clr), ramp2, and ramp3 receptor components from the western clawed frog (Xenopus tropicalis). Messenger RNAs of amphibian clr and ramp2 were highly expressed in the heart, whereas that of ramp3 was highly expressed in the whole blood. In HEK293T cells expressing clr-ramp2, cAMP response element luciferase (CRE-Luc) reporter activity was activated by am1. In HEK293T cells expressing clr-ramp3, CRE-Luc reporter activity was increased by the treatment with am2 at the lowest dose, but with am5 and am1 at higher dose. Our results provided new insights into the roles of AM family peptides through CLR-RAMP receptor complexes in the tetrapods.


Assuntos
Adrenomedulina , Hormônios Peptídicos , Receptores da Calcitonina , Adrenomedulina/genética , Animais , Proteína Semelhante a Receptor de Calcitonina/genética , Células HEK293 , Humanos , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores da Calcitonina/genética , Xenopus
4.
Mol Cell Endocrinol ; 496: 110518, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344393

RESUMO

Neuromedin U (NMU) shows circadian expression in the rat pars tuberalis (PT), and is known to be suppressed by melatonin. Here we examined the involvement of adenosine in the regulation of Nmu expression. We found that the rat PT expressed adenosine receptor A2b and that an adenosine receptor agonist, NECA, stimulated Nmu expression in brain slice cultures. In vitro promoter assays revealed that NECA stimulated Nmu promoter activity via a cAMP response element (CRE) in the presence of adenosine receptor A2b. NECA also increased the levels of phosphorylated CRE-binding protein. These findings suggest that adenosine stimulates Nmu expression by activating the cAMP signaling pathway through adenosine receptor A2b in the rat PT. This is the first report to demonstrate that Nmu expression in the PT is regulated by adenosine, which acts as an intravital central metabolic signal, in addition to melatonin, which acts as an external photoperiodic environmental signal.


Assuntos
Adenosina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuropeptídeos/biossíntese , Hipófise/metabolismo , RNA Mensageiro/biossíntese , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Masculino , Hipófise/citologia , Ratos , Ratos Endogâmicos F344 , Receptor A2B de Adenosina/metabolismo
5.
Cell Tissue Res ; 375(3): 743-754, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30377784

RESUMO

We previously demonstrated that female Runx3 knockout (Runx3-/-) mice were anovulatory and their uteri were atrophic and that Runx3 mRNA was expressed in granulosa cells. To clarify how Runx3 regulates folliculogenesis and ovulation, we examine the effects of Runx3 knockout on the gene expression of growth factors associated with folliculogenesis and enzymes associated with steroidogenesis. In Runx3-/- mouse ovaries, the numbers of primary and antral follicles were lower than those in wild-type (wt) mice at 3 weeks of age, indicating that the loss of Runx3 affects folliculogenesis. The expression of genes encoding activin and inhibin subunits (Inha, Inhba and Inhbb) was also decreased in ovaries from the Runx3-/- mice compared with that in wt mice. Moreover, the expression of the genes Cyp11a1 and Cyp19a1 encoding steroidogenic enzymes was also decreased. In cultured granulosa cells from 3-week-old mouse ovaries, Cyp19a1 mRNA levels were lower in Runx3-/- mice than those in wt mice. Follicle-stimulating hormone (FSH) treatment increased Cyp19a1 mRNA levels in both wt and Runx3-/- granulosa cells in culture but the mRNA level in Runx3-/- granulosa cells was lower than that in wt ones, indicating that granulosa cells could not fully function in the absence of Runx3. At 3 weeks of age, gonadotropin α subunit, FSHß subunit and luteinizing hormone (LH) ß subunit mRNA levels were decreased in Runx3-/- mice. These findings suggest that Runx3 plays a key role in female reproduction by regulating folliculogenesis and steroidogenesis in granulosa cells.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células da Granulosa/metabolismo , Organogênese , Esteroides/biossíntese , Animais , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Estradiol/biossíntese , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Organogênese/efeitos dos fármacos , Progesterona/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo
6.
J Reprod Dev ; 62(5): 479-486, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27301496

RESUMO

We previously demonstrated that the Runx3 transcription factor is expressed in the hypothalami, pituitaries, and ovaries of mice, and that Runx3 knockout (Runx3-/-) mice are anovulatory and their uteri are atrophic. Runx3 mRNA expression was detected in the granulosa cells of ovarian follicles, and in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). In the present study, we examined the effects of Runx3 knockout on the gene expression of enzymes associated with steroidogenesis. We found decreased Cyp11a1 mRNA expression in Runx3-/- mouse ovaries compared with that in wild-type (wt) mouse ovaries at the age of 8 weeks. In situ hybridization analysis showed that the percentages of Cyp11a1 mRNA-expressing theca cells in follicles of Runx3-/- mice were decreased compared with those of wt mice. In accord with the alterations in Runx3-/- mouse ovaries, Kiss1 mRNA levels in ARC were increased, whereas mRNA levels of kisspeptin in AVPV were decreased, and gonadotropin-releasing hormone in the preoptic area and follicle-stimulating hormone ß subunit gene were increased in Runx3-/- mice. Following an ovarian transplantation experiment between Runx3-/- mice and wt mice, corpora lutea were observed when ovaries from Runx3-/- mice were transplanted into wt mice, but not when those from wt mice were transplanted into Runx3-/- mice, suggesting that Runx3 in the hypothalamo-pituitary system may drive gonadotropin release to induce ovulation in the ovary. These findings indicate that Runx3 plays a crucial role in the hypothalamo-pituitary-gonadal axis.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Ovário/fisiologia , Ovulação/fisiologia , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gonadotropinas/metabolismo , Células da Granulosa/citologia , Sistema Hipotálamo-Hipofisário , Hipotálamo/metabolismo , Hipotálamo Anterior/fisiologia , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Folículo Ovariano/fisiologia , RNA Mensageiro/metabolismo , Esteroides/química , Fatores de Transcrição/metabolismo
7.
Gene ; 562(1): 62-9, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25701401

RESUMO

Melanocortin receptor 3 (MC3R) is expressed in the hypothalamus and pituitary in humans and rodents, and is involved in the control of feeding, energy metabolism, and pituitary function. In the mouse pituitary, MC3R is detected in mammotrophs. This study aimed to clarify the regulatory mechanism for Mc3r expression in the mouse pituitary. The promoter activities of reporter constructs for the MC3R gene 5'-flanking region up to -4000 bp (transcription initiation site designated as +1) were analyzed. The promoter activity significantly increased in the -86/+109 construct, but decreased in the -38/+109 construct, indicating that the minimal promoter required for basal expression of Mc3r is located in the -86/+109 region. Putative binding sites for transcription factors AP-1 and ATF4 were found in the 5'-flanking region of Mc3r. Site-directed mutation or deletion of these sites affected the promoter activities. In gel-shift assays with a nuclear extract of mouse anterior pituitary cells, band-shifts were detected for both sites after the addition of the nuclear extract, and were decreased in the presence of excess unlabeled probe competitors. These results indicated that both sites were involved in the regulation of Mc3r expression in anterior pituitary cells. Estradiol-17ß treatment increased the Mc3r promoter activity, indicating that the gene is regulated by estradiol-17ß. In conclusion, we have demonstrated the minimum promoter region required for Mc3r expression, and identified two binding sites for AP-1 and ATF4 and in the 5' upstream-flanking region of Mc3r that are essential for Mc3r expression.


Assuntos
Fator 4 Ativador da Transcrição/genética , Adeno-Hipófise/metabolismo , Regiões Promotoras Genéticas , Receptor Tipo 3 de Melanocortina/genética , Fator de Transcrição AP-1/genética , Região 5'-Flanqueadora , Fator 4 Ativador da Transcrição/metabolismo , Animais , Sítios de Ligação , Estradiol/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Adeno-Hipófise/efeitos dos fármacos , Ligação Proteica , Receptor Tipo 3 de Melanocortina/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
8.
Gene ; 542(1): 23-8, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24631266

RESUMO

Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of ß-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken.


Assuntos
Galinhas/genética , Plumas/citologia , Plumas/metabolismo , Regulação da Expressão Gênica , beta-Queratinas/genética , Animais , Sequência de Bases , Evolução Biológica , Estradiol/farmacologia , Feminino , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , RNA Mensageiro/biossíntese , Alinhamento de Sequência
9.
Gen Comp Endocrinol ; 178(2): 175-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22613673

RESUMO

We examined growth of euryhaline Japanese medaka (Oryzias latipes) after transfer to freshwater or seawater from isotonic saline. Growth was unaffected by the different salinities for 1 week, but the body weight increase and BMI of fish kept in freshwater for 2-3 weeks were significantly higher than those in the isotonic controls. These results may reflect the usual habitat of this species. To assess the basis for the difference in growth, energetics and the hepatic stress axis were evaluated 1 week after the transfer. Unexpectedly, despite the higher growth rate, the rate of routine oxygen consumption was significantly higher in freshwater. Plasma cortisol levels in freshwater were significantly higher than those in seawater, and the mRNA levels of the glucocorticoid receptor (GR1) in the liver were significantly lower in freshwater and seawater, compared to that in isotonic saline. Branchial Na(+)/K(+)-ATPase activities were also reduced significantly in freshwater and seawater, compared to that in isotonic saline. The higher levels of hepatic GR1 expression and branchial Na(+)/K(+)-ATPase activity in isotonic salinity than those in freshwater and seawater for 1 week may account for the lower growth rate under the isotonic condition. After 3 weeks, however, the Na(+)/K(+)-ATPase activity in seawater was significantly higher than that in freshwater. No significant difference in growth rate between freshwater and seawater groups indicates that medaka is a good model for studies of hypo- and hyperosmotic adaptations, since osmoregulation is not strongly associated with size and growth.


Assuntos
Hidrocortisona/sangue , Fígado/metabolismo , Oryzias/crescimento & desenvolvimento , Oryzias/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Água Doce , Oryzias/genética , RNA Mensageiro , Receptores de Glucocorticoides/genética , Salinidade , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 295(6): R2075-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18922959

RESUMO

The teleost adrenomedullin (AM) family consists of three groups, AM1/AM4, AM2/AM3, and AM5. In the present study, we examined the effects of homologous AM1, AM2, and AM5 on drinking and renal function after peripheral or central administration in conscious freshwater eels. AM2 and AM5, but not AM1, exhibited dose-dependent (0.01-1 nmol/kg) dipsogenic and antidiuretic effects after intra-arterial bolus injection. The antidiuretic effect was significantly correlated with the degree of associated hypotension. To avoid the potential indirect osmoregulatory effects of AM-induced hypotension, infusion of AMs was also performed at nondepressor doses. Drinking was enhanced dose-dependently at 0.1-3 pmol.kg(-1).min(-1) of AM2 and AM5, matching the potency and efficacy of angiotensin II (ANG II), the most potent dipsogenic hormone known thus far. AM2 and AM5 infusion also induced mild antidiuresis, while AM1 caused antinatriuresis. Additionally, AMs were injected into the third and fourth ventricles of conscious eels to assess their site of dipsogenic action. However, none of the AMs at 0.05-0.5 nmol induced drinking, while ANG II was highly dipsogenic. AM2 and ANG II injected into the third ventricle increased arterial pressure while AM5 decreased it in a dose-dependent manner, and both AM2 and AM5 decreased blood pressure when injected into the fourth ventricle. These data suggest that circulating AM2 and AM5 act on a target site in the brain that lacks the blood-brain barrier. Collectively, the present study showed that AM2 and AM5 are potent osmoregulatory hormones in the eel, and their actions imply involvement in seawater adaptation of this euryhaline species.


Assuntos
Adrenomedulina/metabolismo , Anguilla/fisiologia , Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Equilíbrio Hidroeletrolítico , Adaptação Fisiológica , Adrenomedulina/administração & dosagem , Angiotensina II/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Pressão Sanguínea , Diurese , Ingestão de Líquidos , Proteínas de Peixes/administração & dosagem , Frequência Cardíaca , Humanos , Infusões Parenterais , Injeções Intra-Arteriais , Injeções Intraventriculares , Hormônios Peptídicos/administração & dosagem , Fatores de Tempo , Urodinâmica
11.
J Exp Zool A Comp Exp Biol ; 305(9): 787-98, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16902950

RESUMO

Fish endocrinologists are commonly motivated to pursue their research driven by their own interests in these aquatic animals. However, the data obtained in fish studies not only satisfy their own interests but often contribute more generally to the studies of other vertebrates, including mammals. The life of fishes is characterized by the aquatic habitat, which demands many physiological adjustments distinct from the terrestrial life. Among them, body fluid regulation is of particular importance as the body fluids are exposed to media of varying salinities only across the thin respiratory epithelia of the gills. Endocrine systems play pivotal roles in the homeostatic control of body fluid balance. Judging from the habitat-dependent control mechanisms, some osmoregulatory hormones of fish should have undergone functional and molecular evolution during the ecological transition to the terrestrial life. In fact, water-regulating hormones such as vasopressin are essential for survival on the land, whereas ion-regulating hormones such as natriuretic peptides, guanylins and adrenomedullins are diversified and exhibit more critical functions in aquatic species. In this short review, we introduce some examples illustrating how comparative fish studies contribute to general endocrinology by taking advantage of such differences between fishes and tetrapods. In a functional context, fish studies often afford a deeper understanding of the essential actions of a hormone across vertebrate taxa. Using the natriuretic peptide family as an example, we suggest that more functional studies on fishes will bring similar rewards of understanding. At the molecular level, recent establishment of genome databases in fishes and mammals brings clues to the evolutionary history of hormone molecules via a comparative genomic approach. Because of the functional and molecular diversification of ion-regulating hormones in fishes, this approach sometimes leads to the discovery of new hormones in tetrapods as exemplified by adrenomedullin 2.


Assuntos
Peixes/fisiologia , Hormônios/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adrenomedulina , Sequência de Aminoácidos , Animais , Evolução Molecular , Peixes/genética , Água Doce , Hormônios/genética , Humanos , Dados de Sequência Molecular , Natriuréticos/genética , Natriuréticos/fisiologia , Peptídeos/genética , Peptídeos/fisiologia , Água do Mar , Alinhamento de Sequência
12.
FEBS Lett ; 556(1-3): 53-8, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14706825

RESUMO

We have identified cDNA encoding a new member of the adrenomedullin (AM) family, AM2, for the first time in mammals (mouse, rat and human). The predicted precursor carried mature AM2 in the C-terminus, which had an intramolecular ring formed by an S-S bond and a possibly amidated C-terminus. Phylogenetic analyses clustered AM2 and AM into two distinct but closely related groups. Similarity of exon-intron structure and synteny of neighboring genes showed that mammalian AM2 is an ortholog of pufferfish AM2 and a paralog of mammalian AM. AM2 mRNA was expressed in submaxillary gland, kidney, stomach, ovary, lymphoid tissues and pancreas of mice, but not in adrenal and testis. Intravenous injection of synthetic mature AM2 decreased arterial pressure more potently than AM, and induced antidiuresis and antinatriuresis in mice. These results show that at least two peptides, AM and AM2, comprise an adrenomedullin family in mammals, and that AM2 may play pivotal roles in cardiovascular and body fluid regulation.


Assuntos
Peptídeos/genética , Peptídeos/farmacologia , Vasoconstritores/farmacologia , Adrenomedulina , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Peptídeos/síntese química , Filogenia , Isoformas de Proteínas , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos , Tetraodontiformes , Urodinâmica/efeitos dos fármacos , Vasoconstritores/síntese química
13.
Biochem Biophys Res Commun ; 311(4): 1072-7, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14623291

RESUMO

Adrenomedullin (AM) is a multifunctional peptide known to form a hormone family with calcitonin gene-related peptide (CGRP) and amylin. We have cloned five distinct AM cDNAs from the pufferfish, Takifugu rubripes, and named them TrAM-1, -2, -3, -4, and -5. Judging from the deduced precursor sequences and processing pattern of the C-terminal mature peptides, TrAMs may be divided into at least two groups; AM-2 and -3, and AM-1, -4, and possibly -5. Phylogenetic analysis of the mature peptides, exon-intron structure of their genes, and tissue distribution of their mRNA also support this classification. TrAM-1 and -4 were ubiquitously expressed in various tissues including the kidney and interrenal (adrenal homolog) as in the case of mammalian AM, while TrAM-2 and -3 were expressed most abundantly in the brain followed by the vascular tissues. Synteny of the genes around AM gene showed that TrAM-1 is the ortholog of mammalian AM. The presence of a PAMP-like sequence in the prosegment of TrAM-1 also supports this notion. Multiple AMs were also detected in another pufferfish, Tetraodon nigroviridis, and in zebrafish, Danio rerio. The present study shows for the first time the presence of a novel AM family in teleost fish that is independent from CGRP and amylin, which further suggests the possible existence of multiple AMs in mammals.


Assuntos
Perfilação da Expressão Gênica/métodos , Peptídeos/genética , Peptídeos/metabolismo , Takifugu/genética , Takifugu/metabolismo , Adrenomedulina , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , Evolução Molecular , Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Peptídeos/classificação , Homologia de Sequência , Especificidade da Espécie , Distribuição Tecidual , Vertebrados/genética , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA