Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 219: 111929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561164

RESUMO

The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.


Assuntos
Envelhecimento , Pesquisa Biomédica , Restrição Calórica , Humanos , Envelhecimento/metabolismo , Pesquisa Biomédica/tendências , Pesquisa Biomédica/história , Pesquisa Biomédica/métodos , Restrição Calórica/métodos , Animais , Exercício Físico/fisiologia , Transplante de Células-Tronco/métodos , Senoterapia/farmacologia
2.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167854

RESUMO

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Rejuvenescimento , Envelhecimento , Animais , Encéfalo/metabolismo , Senescência Celular/fisiologia , Fatores Quimiotáticos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos
3.
Aging Cell ; 20(2): e13296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470505

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest and a pro-inflammatory senescence-associated secretory phenotype (SASP), which is a major contributor to aging and age-related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single-nuclei and single-cell RNA-seq in the hippocampus from young and aged mice. We observed an age-dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK-ATTAC mice, in which p16Ink4a -positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof-of-concept for senolytic interventions' being a potential therapeutic avenue for alleviating age-associated cognitive impairment.


Assuntos
Disfunção Cognitiva/patologia , Encefalite/patologia , Fatores Etários , Animais , Senescência Celular , Disfunção Cognitiva/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Encefalite/metabolismo , Camundongos , Camundongos Transgênicos
4.
EMBO J ; 38(23): e101982, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633821

RESUMO

Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.


Assuntos
Envelhecimento/patologia , Atrofia/patologia , Senescência Celular , Melanócitos/patologia , Pele/patologia , Telômero/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Atrofia/induzido quimicamente , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Feminino , Humanos , Masculino , Melanócitos/metabolismo , Pessoa de Meia-Idade , Comunicação Parácrina , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/metabolismo , Pele/metabolismo , Telômero/metabolismo , Adulto Jovem
5.
Aging Cell ; 18(3): e12950, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907060

RESUMO

Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug-inducible "suicide" genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra-abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity-related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity-related metabolic dysfunction and its complications.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Senescência Celular/efeitos dos fármacos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Tecido Adiposo/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Senescência Celular/genética , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dasatinibe/farmacologia , Feminino , Ganciclovir/farmacologia , Glucose/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quercetina/farmacologia
6.
Cell Metab ; 29(5): 1061-1077.e8, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612898

RESUMO

Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.


Assuntos
Ansiedade/etiologia , Senescência Celular/efeitos dos fármacos , Neurogênese , Obesidade/complicações , Animais , Ansiedade/tratamento farmacológico , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/embriologia , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Dasatinibe/farmacologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Gotículas Lipídicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Quercetina/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
7.
Cell Death Dis ; 9(3): 353, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500364

RESUMO

Besides cell death, autophagy and cell senescence are the main outcomes of anticancer treatment. We demonstrate that tacrine-melatonin heterodimer C10, a potent anti-Alzheimer's disease drug, has an antiproliferative effect on MCF-7 breast cancer cells. The main cell response to a 24 h-treatment with C10 was autophagy enhancement accompanied by inhibition of mTOR and AKT pathways. Significantly increased autophagy markers, such as LC3B- and ATG16L-positive vesicles, confirmed autophagy induction by C10. However, analysis of autophagic flux using mCherry-GFP-LC3B construct revealed inhibition of autophagy by C10 at the late-stage. Moreover, electron microscopy and analysis of colocalization of LC3B and LAMP-1 proteins provided evidence of autophagosome-lysosome fusion with concomitant inhibition of autolysosomal degradation function. After transient treatment with IC50 dose of C10 followed by cell culture without the drug, 20% of MCF-7 cells displayed markers of senescence. On the other hand, permanent cell treatment with C10 resulted in massive cell death on the 5th or 6th day. Recently, an approach whereby autophagy is induced by one compound and simultaneously blocked by the use of another one has been proposed as a novel anticancer strategy. We demonstrate that the same effect may be achieved using a single agent, C10. Our findings offer a new, promising strategy for anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Melatonina/análogos & derivados , Melatonina/farmacologia , Tacrina/análogos & derivados , Tacrina/farmacologia , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Fibroblastos , Fase G1/efeitos dos fármacos , Células HCT116 , Humanos , Células MCF-7
8.
Nat Commun ; 8: 15691, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608850

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.


Assuntos
Senescência Celular/efeitos dos fármacos , Dasatinibe/química , Fígado Gorduroso/patologia , Inflamação , Quercetina/química , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fígado Gorduroso/metabolismo , Fibroblastos/metabolismo , Hepatócitos/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
9.
Cell Stress ; 1(1): 70-72, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31225436

RESUMO

Cellular senescence, the irreversible loss of replicative potential of somatic cells, was first described in fibroblasts cultured in vitro by Leonard Hayflick more than 50 years ago. Since then, the field of cellular senescence has witnessed a meteoric rise, with multiple studies highlighting its importance in varied physiological contexts such as cancer, development and ageing. A major recent development in the senescence field has been the creation of mouse models which allow the specific elimination of senescent cells. These genetic tools have allowed scientists, for the first time, to conduct proof-of-principle investigations into the causal impact of senescence during the ageing process and in the context of several age-related diseases. Furthermore, these experiments provided the rationale for the development of a new class of drugs named "senolytics", that can specifically kill senescent cells, which are now of great interest to academics and pharma companies alike. Non-alcoholic fatty liver disease (NAFLD) is more prevalent in the older and obese population and unrelated to alcohol consumption. It can be characterized by simple liver fat accumulation (steatosis) but it can progress to more severe stages such as non-alcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Previous studies have demonstrated that during ageing and NAFLD, hepatocytes accumulate markers of cellular senescence. However, until now, it was unclear whether senescence was a cause or consequence of liver disease.

10.
J Bone Miner Res ; 31(11): 1920-1929, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27341653

RESUMO

Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a , profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells of various lineages within the bone microenvironment become senescent, although senescent myeloid cells and senescent osteocytes predominantly develop the SASP. Given the critical roles of osteocytes in orchestrating bone remodeling, our findings suggest that senescent osteocytes and their SASP may contribute to age-related bone loss. © 2016 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/citologia , Microambiente Celular , Senescência Celular , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA Satélite/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fenótipo
11.
Proc Natl Acad Sci U S A ; 112(46): E6301-10, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578790

RESUMO

Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction.


Assuntos
Adipócitos/enzimologia , Senescência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Janus Quinases/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/enzimologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Senescência Celular/genética , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Macrófagos/citologia , Macrófagos/enzimologia , Camundongos , RNA Interferente Pequeno/genética , Transdução de Sinais/genética
12.
Proc Natl Acad Sci U S A ; 111(22): 8049-54, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843142

RESUMO

Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.


Assuntos
Envelhecimento/metabolismo , Compartimento Celular/fisiologia , Corpos de Inclusão/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Vimentina/metabolismo , Actinas/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Células HeLa , Humanos , Filamentos Intermediários/metabolismo , Mamíferos , Camundongos , Microscopia Confocal/métodos , Mitose/fisiologia , Neuroblastoma , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Estresse Fisiológico/fisiologia , Vimentina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA