Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(8): 2507-2524, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992989

RESUMO

The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.


Assuntos
Alphavirus , Antivirais , Proteínas não Estruturais Virais , Alphavirus/efeitos dos fármacos , Alphavirus/química , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Animais , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/antagonistas & inibidores
2.
Eur J Med Chem ; 263: 115954, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984297

RESUMO

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Humanos , Trypanosoma brucei rhodesiense , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Trypanosoma brucei gambiense
3.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144741

RESUMO

Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.


Assuntos
Produtos Biológicos , Carotenoides , Animais , Produtos Biológicos/farmacologia , Carotenoides/metabolismo , Colesterol , Difosfatos/metabolismo , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Plantas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Solventes , Serina-Treonina Quinases TOR/metabolismo , Terpenos/metabolismo
4.
Molecules ; 26(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673007

RESUMO

Malaria remains a significant cause of morbidity and mortality in Sub-Saharan Africa and South Asia. While clinical antimalarials are efficacious when administered according to local guidelines, resistance to every class of antimalarials is a persistent problem. There is a constant need for new antimalarial therapeutics that complement parasite control strategies to combat malaria, especially in the tropics. In this work, nopol-based quinoline derivatives were investigated for their inhibitory activity against Plasmodium falciparum, one of the parasites that cause malaria. The nopyl-quinolin-8-yl amides (2-4) were moderately active against the asexual blood stage of chloroquine-sensitive strain Pf3D7 but inactive against chloroquine-resistant strains PfK1 and PfNF54. The nopyl-quinolin-4-yl amides and nopyl-quinolin-4-yl-acetates analogs were generally less active on all three strains. Interesting, the presence of a chloro substituent at C7 of the quinoline ring of amide 8 resulted in sub-micromolar EC50 in the PfK1 strain. However, 8 was more than two orders of magnitude less active against Pf3D7 and PfNF54. Overall, the nopyl-quinolin-8-yl amides appear to share similar antimalarial profile (asexual blood-stage) with previously reported 8-aminoquinolines like primaquine. Future work will focus on investigating the moderately active and selective nopyl-quinolin-8-yl amides on the gametocyte or liver stages of Plasmodium falciparum and Plasmodium vivax.


Assuntos
Antimaláricos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Plasmodium/efeitos dos fármacos , Quinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Células Hep G2 , Humanos , Quinolinas/síntese química , Quinolinas/química
5.
ACS Med Chem Lett ; 11(11): 2139-2145, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214821

RESUMO

Emerging infectious diseases like those caused by arboviruses such as Venezuelan equine encephalitis virus (VEEV) pose a serious threat to public health systems. Development of medical countermeasures against emerging infectious diseases are of utmost importance. In this work, an acrylate and vinyl sulfone-based chemical series was investigated as promising starting scaffolds against VEEV and as inhibitors of the cysteine protease domain of VEEV's nonstructural protein 2 (nsP2). Primary screen and dose response studies were performed to evaluate the potency and cytotoxicity of the compounds. The results provide structural insights into a new class of potent nonpeptidic covalent inhibitors of nsP2 cysteine protease represented by compound 11 (VEEV TrD, EC50 = 2.4 µM (HeLa), 1.6 µM (Vero E6)). These results may facilitate the evolution of the compounds into selective and broad-spectrum anti-alphaviral drug leads.

6.
Bioorg Med Chem Lett ; 30(14): 127217, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527539

RESUMO

The number of reported cases of Human African Trypanosmiasis (HAT), caused by kinetoplastid protozoan parasite Trypanosoma brucei, is declining in sub-Saharan Africa. Historically, such declines are generally followed by periods of higher incidence, and one of the lingering public health challenges of HAT is that its drug development pipeline is historically sparse. As a continuation of our work on new antitrypanosomal agents, we found that partially saturated quinoline-based vinyl sulfone compounds selectively inhibit the growth of T. brucei but displayed relatively weak inhibitory activity towards T. brucei's cysteine protease rhodesain. While two nitroaromatic analogues of the quinoline-based vinyl sulfone compounds displayed potent inhibition of T. brucei and rhodesain. The quinoline derivatives and the nitroaromatic-based compounds discovered in this work can serve as leads for ADME-based optimization and pre-clinical investigations.


Assuntos
Antiprotozoários/farmacologia , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Sulfonas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
7.
Bioorg Med Chem Lett ; 28(9): 1647-1651, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29609908

RESUMO

A series of natural products-based phenyl sulfone derivative and their property-based analogues were investigated as potential growth inhibitors of Trypanosoma brucei. Trypanosoma brucei is a kinetoplastid protozoan parasite that causes trypanosomiasis. In this work, we found that nopol- and quinoline-based phenyl sulfone derivative were the most active and selective for T. brucei, and they were not reactive towards the active thiol of T. brucei's cysteine protease rhodesain. A thiol reactive variant of the quinoline-based phenyl sulfone was subsequently investigated and found to be a moderate inhibitor of rhodesain. The quinoline-based compound that is not reactive towards rhodesain can serve a template for phenotypic-based lead discovery while its thiol-active congener can serve as template for structure-based investigation of new antitrypanosomal agents.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas , Quinolinas/farmacologia , Sulfonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolinas/química , Relação Estrutura-Atividade , Sulfonas/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Molecules ; 23(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419735

RESUMO

The Latin American plant Tabernaemontana longipes was studied in this work as a potential source of antiparasitic agents. The chloroform extract of T. longipes leaves was separated into several fractions, and tested for antitrypanosomal activity. One of the fractions displayed significant growth inhibitory activity against Trypanosoma brucei. The active principle in the fraction was isolated, purified, and characterized by NMR and mass spectrometry. The antitrypanosomal agent in the CHCl3 extract of T. longipes leaves is the pentacyclic triterpenoid bauerenol acetate. A metabolite profiling assay suggest that the triterpenoid influences cholesterol metabolism. The molecular target(s) of bauerenol and its acetate, like many other antiparasitic pentacyclic triterpenoids is/are unknown, but they present privileged structural scaffolds that can be explored for structure-based activity optimization studies using phenotypic assays.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tabernaemontana/química , Triterpenos/química , Triterpenos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Testes de Sensibilidade Parasitária , Trypanosoma brucei brucei/efeitos dos fármacos
9.
Sci Pharm ; 85(1)2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28134827

RESUMO

Trichomoniasis, caused by the parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually-transmitted disease, and there can be severe complications from trichomoniasis. Antibiotic resistance in T. vaginalis is increasing, but there are currently no alternatives treatment options. There is a need to discover and develop new chemotherapeutic alternatives. Plant-derived natural products have long served as sources for new medicinal agents, as well as new leads for drug discovery and development. In this work, we have carried out an in silico screening of 952 antiprotozoal phytochemicals with specific protein drug targets of T. vaginalis. A total of 42 compounds showed remarkable docking properties to T. vaginalis methionine gamma-lyase (TvMGL) and to T. vaginalis purine nucleoside phosphorylase (TvPNP). The most promising ligands were polyphenolic compounds, and several of these showed docking properties superior to either co-crystallized ligands or synthetic enzyme inhibitors.

10.
Comput Biol Chem ; 64: 163-184, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27387412

RESUMO

Alphaviruses such as Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), and Western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that can cause fevers, rash, and rheumatic diseases (CHIKV, ONNV, RRV) or potentially fatal encephalitis (EEEV, VEEV, WEEV) in humans. These diseases are considered neglected tropical diseases for which there are no current antiviral therapies or vaccines available. The alphavirus non-structural protein 2 (nsP2) contains a papain-like protease, which is considered to be a promising target for antiviral drug discovery. In this work, molecular docking analyses have been carried out on a library of 2174 plant-derived natural products (290 alkaloids, 664 terpenoids, 1060 polyphenolics, and 160 miscellaneous phytochemicals) with the nsP2 proteases of CHIKV, ONNV, RRV, EEEV, VEEV, WEEV, as well as Aura virus (AURV), Barmah Forest Virus (BFV), Semliki Forest virus (SFV), and Sindbis virus (SINV) in order to identity structural scaffolds for inhibitor design or discovery. Of the 2174 phytochemicals examined, a total of 127 showed promising docking affinities and poses to one or more of the nsP2 proteases, and this knowledge can be used to guide experimental investigation of potential inhibitors.


Assuntos
Alphavirus/química , Inibidores de Proteases/isolamento & purificação , Antivirais/química , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química
11.
Chem Biol Drug Des ; 87(1): 154-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26242248

RESUMO

Current treatment options for human African trypanosomiasis (HAT) are ineffective, and they have several well-known clinical limitations. In our continued efforts to identify chemotypes that can be developed into clinically useful drugs, we screened a targeted compound library against the major cathepsin L (rhodesain) in T. brucei. We report the antirhodesain activity and antitrypanosomal activity of the compounds in this letter. The identified compounds can serve as starting points for structure- and/or phenotype-based lead optimization strategy against Trypanosoma brucei.


Assuntos
Catepsina L/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/enzimologia , Células Hep G2 , Humanos
12.
Bioorg Med Chem Lett ; 25(20): 4509-12, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342866

RESUMO

Rhodesain, the major cathepsin L-like cysteine protease in the protozoan Trypanosoma brucei rhodesiense, the causative agent of African sleeping sickness, is a well-validated drug target. In this work, we used a fragment-based approach to identify inhibitors of this cysteine protease, and identified inhibitors of T. brucei. To discover inhibitors active against rhodesain and T. brucei, we screened a library of covalent fragments against rhodesain and conducted preliminary SAR studies. We envision that in vitro enzymatic assays will further expand the use of the covalent tethering method, a simple fragment-based drug discovery technique to discover covalent drug leads.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Cisteína/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei rhodesiense/metabolismo , Cisteína/análogos & derivados , Cisteína/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia
13.
J Chem Inf Model ; 54(11): 3051-5, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25383984

RESUMO

Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor ß. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor ß. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.


Assuntos
Furanos/farmacologia , Lignanas/farmacologia , Receptores beta dos Hormônios Tireóideos/antagonistas & inibidores , Furanos/metabolismo , Humanos , Ligação de Hidrogênio , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Receptores beta dos Hormônios Tireóideos/química , Receptores beta dos Hormônios Tireóideos/metabolismo
14.
J Mol Graph Model ; 48: 105-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24463105

RESUMO

A molecular docking analysis has been carried out to examine potential Leishmania protein targets of antiprotozoal plant-derived polyphenolic compounds. A total of 352 phenolic phytochemicals, including 10 aurones, six cannabinoids, 34 chalcones, 20 chromenes, 52 coumarins, 92 flavonoids, 41 isoflavonoids, 52 lignans, 25 quinones, eight stilbenoids, nine xanthones, and three miscellaneous phenolic compounds, were used in the virtual screening study using 24 Leishmania enzymes (52 different protein structures from the Protein Data Bank). Noteworthy protein targets were Leishmania dihydroorotate dehydrogenase, N-myristoyl transferase, phosphodiesterase B1, pteridine reductase, methionyl-tRNA synthetase, tyrosyl-tRNA synthetase, uridine diphosphate-glucose pyrophosphorylase, nicotinamidase, and glycerol-3-phosphate dehydrogenase. Based on in-silico analysis of antiparasitic polyphenolics in this study, two aurones, one chalcone, five coumarins, six flavonoids, one isoflavonoid, three lignans, and one stilbenoid, can be considered to be promising drug leads worthy of further investigation.


Assuntos
Antiprotozoários/química , Simulação de Acoplamento Molecular , Polifenóis/química , Proteínas de Protozoários/química , Motivos de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Leishmania/enzimologia , Extratos Vegetais/química , Proteínas de Protozoários/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA