Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 183: 143-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548410

RESUMO

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Epitopos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
2.
Front Immunol ; 14: 1177245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287975

RESUMO

With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.


Assuntos
Varicela , Herpes Zoster , Células-Tronco Pluripotentes Induzidas , Infecção pelo Vírus da Varicela-Zoster , Humanos , Herpesvirus Humano 3 , Técnicas de Cocultura , Replicação Viral/fisiologia , Neurônios , Macrófagos , Interferons , Antivirais , Imunidade Inata
3.
STAR Protoc ; 4(1): 102053, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853720

RESUMO

Wilms' tumor protein 1 (WT1) is a tumor-associated antigen overexpressed in various cancers. As a self-antigen, negative selection reduces the number of WT1-specific T cell receptors (TCRs). Here, we provide a protocol to generate WT137-45-specific TCRs using healthy human peripheral blood mononuclear cells. We describe the expansion of WT1-specific T cell clones by two consecutive in vitro stimulations with autologous WT137-45-pulsed dendritic cells and peripheral blood lymphocytes. We then detail the detection with human leukocyte antigen/WT137-45 tetramers.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Epitopos , Leucócitos Mononucleares , Linfócitos T Citotóxicos , Tumor de Wilms/metabolismo , Neoplasias Renais/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499533

RESUMO

Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.


Assuntos
COVID-19 , Linfócitos T , Humanos , SARS-CoV-2 , Tolerância Imunológica , Células Dendríticas , Antígenos , Peptídeos , Apoptose
5.
Viruses ; 14(4)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35458482

RESUMO

BACKGROUND: Prolonged shedding of SARS-CoV-2 in immunocompromised patients has been described. Furthermore, an accumulation of mutations of the SARS-CoV-2 genome in these patients has been observed. METHODS: We describe the viral evolution, immunologic response and clinical course of a patient with a lymphoma in complete remission who had received therapy with rituximab and remained SARS-CoV-2 RT-qPCR positive for 161 days. RESULTS: The patient remained hospitalised for 10 days, after which he fully recovered and remained asymptomatic. A progressive increase in Ct-value, coinciding with a progressive rise in lymphocyte count, was seen from day 137 onward. Culture of a nasopharyngeal swab on day 67 showed growth of SARS-CoV-2. Whole genome sequencing (WGS) demonstrated that the virus belonged to the wildtype SARS-CoV-2 clade 20B/GR, but rapidly accumulated a high number of mutations as well as deletions in the N-terminal domain of its spike protein. CONCLUSION: SARS-CoV-2 persistence in immunocompromised individuals has important clinical implications, but halting immunosuppressive therapy might result in a favourable clinical course. The long-term shedding of viable virus necessitates customized infection prevention measures in these individuals. The observed accelerated accumulation of mutations of the SARS-CoV-2 genome in these patients might facilitate the origin of new VOCs that might subsequently spread in the general community.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Hospedeiro Imunocomprometido , Masculino , Infecção Persistente , Rituximab/uso terapêutico , SARS-CoV-2/genética
6.
Clin Infect Dis ; 75(3): 442-452, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34849638

RESUMO

INTRODUCTION: Maternal antibody interference of the infant's humoral immune responses raises some concern to the strategy of maternal Tdap (tetanus, diphtheria, acellular pertussis [aP]) vaccination. This study assessed the impact of maternal Tdap antibodies on the infant's pertussis-specific T lymphocyte responses following infant vaccination with an aP containing vaccine, in a term and preterm born cohort. METHODS: Heparin samples (±0.5 mL) were conveniently drawn from infants of a Belgian prospective cohort study (N = 79, NCT02511327), including Tdap vaccinated (Boostrix®) and nonvaccinated women (no Tdap vaccine in the last 5 years) that delivered at term or prematurely. Sampling was performed before and 1 month after primary (8-12-16 weeks) and booster vaccination (13 or 15 months) with DTaP-IPV-HB-PRP~T vaccine (Hexyon®). Pertussis toxin (PT)-specific CD3+, CD3+ CD4+ and CD3+ CD8+ lymphoblasts and their cytokine secretions were measured using a flow cytometric assay on whole blood (FASCIA) and multiplex technology (Meso Scale Discovery), respectively. RESULTS: In total, 57% of all infants were considered PT-specific CD3+ CD4+ lymphoblasts responders after primary and booster vaccination, whereas 17% were CD3+ CD8+ lymphoblast responders. Interferon (IFN)-γ, interleukin (IL)-13, IL-17A, and IL-5 cytokine secretions after primary and booster vaccination were indicative of a mixed T helper (Th) 1/Th2/Th17 cell profile. Lymphoblast and cytokine levels were comparable between term and preterm infants. Nonresponders for IL-13 after booster vaccination had higher maternal PT immunoglobulin G (IgG) levels at birth when compared to responders. CONCLUSIONS: Term and preterm born infants are capable of inducing Th1, Th2, and Th17 responses after aP vaccination, yet maternal vaccination modulate these responses. Evaluation of this effect in larger trials is needed.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Coqueluche , Anticorpos Antibacterianos , Citocinas , Feminino , Humanos , Imunidade Celular , Imunização Secundária , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Toxina Pertussis , Vacina contra Coqueluche , Estudos Prospectivos , Vacinação , Coqueluche/prevenção & controle
7.
Methods Mol Biol ; 2120: 183-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32124320

RESUMO

Recognition of cancer epitopes by T cells is fundamental for the activation of targeted antitumor responses. As such, the identification and study of epitope-specific T cells has been instrumental in our understanding of cancer immunology and the development of personalized immunotherapies. To facilitate the study of T-cell epitope specificity, we developed a prediction tool, TCRex, that can identify epitope-specific T-cell receptors (TCRs) directly from TCR repertoire data and perform epitope-specificity enrichment analyses. This chapter details the use of the TCRex web tool.


Assuntos
Epitopos de Linfócito T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Humanos , Aprendizado de Máquina , Modelos Imunológicos , Software , Especificidade do Receptor de Antígeno de Linfócitos T
8.
Front Immunol ; 10: 2820, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849987

RESUMO

High-throughput T cell receptor (TCR) sequencing allows the characterization of an individual's TCR repertoire and directly queries their immune state. However, it remains a non-trivial task to couple these sequenced TCRs to their antigenic targets. In this paper, we present a novel strategy to annotate full TCR sequence repertoires with their epitope specificities. The strategy is based on a machine learning algorithm to learn the TCR patterns common to the recognition of a specific epitope. These results are then combined with a statistical analysis to evaluate the occurrence of specific epitope-reactive TCR sequences per epitope in repertoire data. In this manner, we can directly study the capacity of full TCR repertoires to target specific epitopes of the relevant vaccines or pathogens. We demonstrate the usability of this approach on three independent datasets related to vaccine monitoring and infectious disease diagnostics by independently identifying the epitopes that are targeted by the TCR repertoire. The developed method is freely available as a web tool for academic use at tcrex.biodatamining.be.


Assuntos
Epitopos de Linfócito T/imunologia , Modelos Biológicos , Receptores de Antígenos de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Algoritmos , Sequência de Aminoácidos , Evolução Clonal/genética , Bases de Dados Genéticas , Epitopos de Linfócito T/química , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Reprodutibilidade dos Testes , Software , Navegador
9.
Immunogenetics ; 70(3): 159-168, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28779185

RESUMO

Current T cell epitope prediction tools are a valuable resource in designing targeted immunogenicity experiments. They typically focus on, and are able to, accurately predict peptide binding and presentation by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. However, recognition of the peptide-MHC complex by a T cell receptor (TCR) is often not included in these tools. We developed a classification approach based on random forest classifiers to predict recognition of a peptide by a T cell receptor and discover patterns that contribute to recognition. We considered two approaches to solve this problem: (1) distinguishing between two sets of TCRs that each bind to a known peptide and (2) retrieving TCRs that bind to a given peptide from a large pool of TCRs. Evaluation of the models on two HIV-1, B*08-restricted epitopes reveals good performance and hints towards structural CDR3 features that can determine peptide immunogenicity. These results are of particular importance as they show that prediction of T cell epitope and T cell epitope recognition based on sequence data is a feasible approach. In addition, the validity of our models not only serves as a proof of concept for the prediction of immunogenic T cell epitopes but also paves the way for more general and high-performing models.


Assuntos
Epitopos de Linfócito T/imunologia , HIV-1/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos/genética , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , HIV-1/isolamento & purificação , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Ligação Proteica/imunologia
10.
Immunogenetics ; 70(6): 363-372, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29196796

RESUMO

Around 30% of individuals will develop herpes zoster (HZ), caused by the varicella zoster virus (VZV), during their life. While several risk factors for HZ, such as immunosuppressive therapy, are well known, the genetic and molecular components that determine the risk of otherwise healthy individuals to develop HZ are still poorly understood. We created a computational model for the Human Leukocyte Antigen (HLA-A, -B, and -C) presentation capacity of peptides derived from the VZV Immediate Early 62 (IE62) protein. This model could then be applied to a HZ cohort with known HLA molecules. We found that HLA-A molecules with poor VZV IE62 presentation capabilities were more common in a cohort of 50 individuals with a history of HZ compared to a nationwide control group, which equated to a HZ risk increase of 60%. This tendency was most pronounced for cases of HZ at a young age, where other risk factors are less prevalent. These findings provide new molecular insights into the development of HZ and reveal a genetic predisposition in those individuals most at risk to develop HZ.


Assuntos
Antígenos HLA-A/imunologia , Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Proteínas Imediatamente Precoces/imunologia , Transativadores/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Idoso , Bélgica/epidemiologia , Varicela/imunologia , Varicela/virologia , Feminino , Predisposição Genética para Doença , Herpes Zoster/epidemiologia , Herpes Zoster/genética , Humanos , Proteínas Imediatamente Precoces/genética , Masculino , Pessoa de Meia-Idade , Modelos Imunológicos , Fatores de Risco , Transativadores/genética , Proteínas do Envelope Viral/genética
11.
Immunogenetics ; 68(6-7): 483-486, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27020058

RESUMO

The varicella zoster virus (VZV) causes the childhood disease commonly known as chickenpox and can later in life reactivate as herpes zoster. The adaptive immune system is known to play an important role in suppressing VZV reactivation. A central aspect of this system is the presentation of VZV-derived peptides by the major histocompatibility complex (MHC) proteins. Here, we investigate if key VZV proteins have evolved their amino acid sequence to avoid presentation by MHC based on predictive models of MHC-peptide affinity. This study shows that the immediate-early proteins of all characterized VZV strains are profoundly depleted for high-affinity MHC-I-restricted epitopes. The same depletion can be found in its closest animal analog, the simian varicella virus. Further orthology analysis towards other herpes viruses suggests that the protein amino acid frequency is one of the primary drivers of targeted epitope depletion.


Assuntos
Varicela/imunologia , Antígenos HLA/imunologia , Herpesvirus Humano 3/imunologia , Proteínas Imediatamente Precoces/imunologia , Evasão da Resposta Imune/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Varicela/virologia , Humanos
12.
J Infect ; 70(2): 171-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25218425

RESUMO

OBJECTIVES: We assessed the association between herpes zoster (HZ) and herpes simplex (HS) occurrence whilst controlling for risk factors of HZ. METHODS: Using a Belgian general practitioner network, a retrospective cohort study with 3736 HZ patients and 14,076 age-gender-practice matched controls was performed, covering over 1.5 million patient-years. Multiple logistic regression was used with HZ as outcome and several diagnoses (malignancy, depression, diabetes mellitus, auto-immune diseases, asthma, multiple sclerosis, HIV, fractures), medications (systemic corticosteroids, biologicals, vaccination), HS and other infections as variables. RESULTS: HS was significantly associated with HZ for all analysed time intervals (up to five years) post HZ (OR of 3.51 [2.09 5.88] 95%CI one year post HZ) and to a lesser extent for time ranges pre HZ. Registration of other infections was significantly associated with HZ in all time intervals pre and post HZ (OR up to 1.37). Malignancy up to five years pre HZ, depression up to one year pre or post HZ, fractures up to two years pre HZ, asthma, auto-immune diseases, and immunosuppressive medication one year pre or post HZ were also associated with HZ. CONCLUSIONS: HZ and HS occurrences are significantly associated and potentially share a common susceptibility beyond the known risk factors.


Assuntos
Herpes Simples/complicações , Herpes Simples/epidemiologia , Herpes Zoster/complicações , Herpes Zoster/epidemiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
13.
Clin Vaccine Immunol ; 21(3): 417-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24429070

RESUMO

Reexposure to viruses is assumed to strengthen humoral and cellular immunity via the secondary immune response. We studied the effects of frequent exposure to viral infectious challenges on immunity. Furthermore, we assessed whether repetitive exposures to varicella-zoster virus (VZV) elicited persistently high immune responses. Blood samples from 11 pediatricians and matched controls were assessed at 3 time points and 1 time point, respectively. Besides the assessment of general immunity by means of measuring T-cell subset percentages, antibody titers and gamma interferon (IFN-γ)/interleukin 2 (IL-2)-producing T-cell percentages against adenovirus type 5 (AdV-5), cytomegalovirus (CMV), tetanus toxin (TT), and VZV were determined. Pediatricians had lower levels of circulating CD4(+)-naive T cells and showed boosting of CD8(+) effector memory T cells. Although no effect on humoral immunity was seen, repetitive exposures to VZV induced persistently higher percentages of IFN-γ-positive T cells against all VZV antigens tested (VZV glycoprotein E [gE], VZV intermediate-early protein 62 [IE62], and VZV IE63) than in controls. T cells directed against latency-associated VZV IE63 benefitted the most from natural exogenous boosting. Although no differences in cellular or humoral immunity were found between the pediatricians and controls for AdV-5 or TT, we did find larger immune responses against CMV antigens in pediatricians. Despite the high infectious burden, we detected a robust and diverse immune system in pediatricians. Repetitive exposures to VZV have been shown to induce a stable increased level of VZV-specific cellular but not humoral immunity. Based on our observations, VZV IE63 can be considered a candidate for a zoster vaccine.


Assuntos
Anticorpos Antivirais/sangue , Herpesvirus Humano 3/imunologia , Exposição Ocupacional , Médicos , Linfócitos T/imunologia , Adenovírus Humanos/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Citocinas/metabolismo , Citomegalovirus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Toxina Tetânica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA