Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 825: 137710, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432355

RESUMO

Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.


Assuntos
Lipopolissacarídeos , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/toxicidade , Lipopolissacarídeos/toxicidade , Ratos Wistar , Acetilcolinesterase/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Glutationa/metabolismo , Encéfalo/metabolismo , Colinérgicos/farmacologia
2.
Curr Aging Sci ; 17(3): 220-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500281

RESUMO

BACKGROUND: Excessive manganese exposure can lead to neurotoxicity with detrimental effects on the brain. Neuroinflammatory responses and redox regulation play pivotal roles in this process. Exploring the impact of hyperoside in a Wistar rat model offers insights into potential neuroprotective strategies against manganese-induced neurotoxicity. OBJECTIVE: The study investigated the neuroprotective efficacy of hyperoside isolated from the ethanol leaf extract of Gongronema latifolium (HELEGL), in the brain tissue of Wistar rats following 15 consecutive days of exposure to 30 mg/L of MnCl2. METHODS: Control animals in Group 1 had access to regular drinking water, while animals in groups 2-4 were exposed to MnCl2 in their drinking water. Groups 3 and 4 also received additional HELEGL at doses of 100 mg/kg and 200 mg/kg of body weight, respectively. In Group 5, HELEGL at a dose of 100 mg/kg of body weight was administered alone. Treatment with HELEGL commenced on day 8 via oral administration. RESULTS: HELEGL effectively mitigated MnCl2-induced memory impairment, organ-body weight discrepancies, and fluid intake deficits. Exposure to MnCl2 increased the activities or levels of various markers such as acyl peptide hydrolase, tumour necrosis factor-α, dipeptidyl peptidase IV, nitric oxide, IL-1ß, prolyl oligopeptidase, caspase-3, myeloperoxidase, H2O2, and malondialdehyde, while it decreased the activities or levels of others, including AChE, BChE, DOPA, serotonin, epinephrine, norepinephrine, GST, GPx, CAT, SOD, GSH, and T-SH (p < 0.05). In contrast, HELEGL effectively counteracted the adverse effects of MnCl2 by alleviating oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, cognitive deficits, and bolstering the antioxidant status. Moreover, HELEGL restored the normal histoarchitecture of the brain, which had been distorted by MnCl2. CONCLUSION: In summary, HELEGL reversed the causative factors of neurodegenerative diseases induced by MnCl2 exposure, suggesting its potential for further exploration as a prospective therapeutic agent in the management of Alzheimer's disease and related forms of dementia.


Assuntos
Encéfalo , Cloretos , Modelos Animais de Doenças , Compostos de Manganês , Fármacos Neuroprotetores , Oxirredução , Estresse Oxidativo , Quercetina , Ratos Wistar , Animais , Quercetina/farmacologia , Quercetina/análogos & derivados , Cloretos/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Mediadores da Inflamação/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Comportamento Animal/efeitos dos fármacos , Antioxidantes/farmacologia , Ratos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/patologia , Anti-Inflamatórios/farmacologia , Memória/efeitos dos fármacos
3.
Heliyon ; 9(7): e17700, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483802

RESUMO

The purpose of this study was to investigate the protective effect of Beta vulgaris leaf extract (BVLE) on Fe2+-induced oxidative testicular damage via experimental and computational models. Oxidative testicular damage was induced via incubation of testicular tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. Treatment was achieved by incubating the testicular tissues with BVLE under the same conditions. The catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels, acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K + ATPase), ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase), glucose-6-phosphatase (G6Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase) were all measured in the tissues. We identified the bioactive compounds present using high-performance liquid chromatography (HPLC). Molecular docking and dynamic simulations were done on all identified compounds using a computational approach. The induction of testicular damage (p < 0.05) decreased the activities of GSH, SOD, CAT, and ENTPDase. In contrast, induction of testicular damage also resulted in a significant increase in MDA and NO levels and an increase in ATPase, G6Pase, and F-1,6-BPase activities. BVLE treatment (p < 0.05) reduced these levels and activities compared to control levels. An HPLC investigation revealed fifteen compounds in BVLE, with quercetin being the most abundant. The molecular docking and MDS analysis of the present study suggest that schaftoside may be an effective allosteric inhibitor of fructose 1,6-bisphosphatase based on the interacting residues and the subsequent effect on the dynamic loop conformation. These findings indicate that B. vulgaris can protect against Fe2+-induced testicular injury by suppressing oxidative stress, acetylcholinesterase, and purinergic activities while regulating carbohydrate dysmetabolism.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36347494

RESUMO

Cadmium chloride (CdCl2) is an important heavy metal widely regarded as an environmental contaminant. Hesperidin, a flavanone glycoside found in citrus fruits, has an established properties against free radicals, apoptosis, and inflammation. The present study investigated the protective actions of hesperidin on CdCl2-induced oxidative damage and inflammation in Drosophila melanogaster. For 7 consecutive days via their diet regimen, the flies were exposed to CdCl2 alone (0.05 mM) or in combination with hesperidin (50 and 100 µM). Exposure to CdCl2 significantly (p < 0.05) increased mortality rate of flies, whereas the survived flies demonstrated significant oxidative toxicity from decreased activities of catalase and Glutathione S-transferase (GST) and Total Thiol (T-SH) and Non-Protein Thiols (NPSH) levels as well as accumulation of Nitric Oxide (NO (nitrite/nitrate)), protein carbonyl and Hydrogen Peroxide (H2O2). However, hesperidin-supplemented diet improved Acetylcholinesterase (AChE) activity, mitochondrial metabolic rate (cell viability), locomotor activity, and amelioration of oxidative damage and lipid peroxidation induced by CdCl2. The hesperidin diet supplement boosted the antioxidant milieu and ameliorated the oxidative damage in the treated flies. Overall, the findings revealed that hesperidin improved antioxidative protective capacity in Drosophila melanogaster model of CdCl2-induced toxicity. This suggests hesperidin as a potential therapeutic agent against oxidative stress disorders due to exposure to CdCl2 and or related toxicants.


Assuntos
Cloreto de Cádmio , Hesperidina , Animais , Cloreto de Cádmio/toxicidade , Cloretos , Hesperidina/farmacologia , Drosophila melanogaster , Peróxido de Hidrogênio , Acetilcolinesterase , Antioxidantes/farmacologia , Óxido Nítrico , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA