Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-36920987

RESUMO

A Gram-stain-negative, spiral bacterium (PAGU 1991T) was isolated from the blood of a patient with diffuse large B-cell lymphoma. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate was very closely related to Helicobacter equorum LMG 23362T (99.1 % similarity), originally isolated from a faecal sample from a healthy horse. PAGU 1991T was also very closely related to PAGU 1750 in our strain library (=CCUG 41437) with 99.7 % similarity. Additional phylogenetic analyses based on the 23S rRNA gene sequence and GyrA amino acid sequence further supported the close relationship between the two human isolates (PAGU 1991T and PAGU 1750) and the horse strain. However, a phylogenetic analysis based on 16S rRNA showed that the two human isolates formed a lineage that was distinct from the horse strain (less than 99.2 % similarity). In silico whole-genome comparisons based on digital DNA-DNA hybridization, average nucleotide identity based on blast and orthologous average nucleotide identity using usearch between the two human isolates and the type strain of H. equorum showed values of less than 52.40, 93.47, and 93.50 %, respectively, whereas those between the two human isolates were 75.8, 97.2, and 97.2 %, respectively. These data clearly demonstrated that the two human isolates formed a single species, distinct from H. equorum. Morphologically, the human isolates could be distinguished by the type of flagella; the human isolates showed a bipolar sheathed flagellum, whereas that of H. equorum was monopolar. Biochemically, the human isolate was characterized by growth at 42 °C under microaerobic conditions and nitrate reduction unability. We conclude that the two human isolates, obtained from geographically and temporally distinct sources, were a novel species, for which we propose the name Helicobacter kumamotonensis sp. nov., with the type strain PAGU 1991T (=GTC 16810T=CCUG 75774T).


Assuntos
Ácidos Graxos , Helicobacter , Humanos , Animais , Cavalos , Técnicas de Tipagem Bacteriana , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/química , DNA Bacteriano/genética , Composição de Bases , Hibridização de Ácido Nucleico
3.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34846284

RESUMO

Genome-wide association studies (GWASs) can reveal genetic variations associated with a phenotype in the absence of any hypothesis of candidate genes. The problem of false-positive sites linked with the responsible site might be bypassed in bacteria with a high homologous recombination rate, such as Helicobacter pylori, which causes gastric cancer. We conducted a small-sample GWAS (125 gastric cancer cases and 115 controls) followed by prediction of gastric cancer and control (duodenal ulcer) H. pylori strains. We identified 11 single nucleotide polymorphisms (eight amino acid changes) and three DNA motifs that, combined, allowed effective disease discrimination. They were often informative of the underlying molecular mechanisms, such as electric charge alteration at the ligand-binding pocket, alteration in subunit interaction, and mode-switching of DNA methylation. We also identified three novel virulence factors/oncoprotein candidates. These results provide both defined targets for further informatic and experimental analyses to gain insights into gastric cancer pathogenesis and a basis for identifying a set of biomarkers for distinguishing these H. pylori-related diseases.


Assuntos
Úlcera Duodenal , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Úlcera Duodenal/complicações , Úlcera Duodenal/genética , Úlcera Duodenal/microbiologia , Estudo de Associação Genômica Ampla , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/complicações , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia
4.
Microb Genom ; 7(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961542

RESUMO

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


Assuntos
Escherichia coli/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Animais , Bovinos , DNA Bacteriano/genética , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Variação Genética , Ilhas Genômicas , Humanos , Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Virulência , Fatores de Virulência/genética
5.
Nat Commun ; 12(1): 2085, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837194

RESUMO

Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen's adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160's targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis.


Assuntos
Adaptação Fisiológica/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Neoplasias Gástricas/microbiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Carcinogênese , Modelos Animais de Doenças , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Mutação , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , RNA-Seq , Neoplasias Gástricas/patologia
6.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354967

RESUMO

Helicobacter pylori ATCC 43504 is a type strain isolated from a gastric cancer patient in Australia and is commonly used for pathogenicity studies. In this study, we report the complete genome sequence of a strain that can infect gerbils. The data provide a basis for future H. pylori research.

7.
Sci Rep ; 10(1): 3251, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094510

RESUMO

Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.


Assuntos
DNA/química , Armadilhas Extracelulares , Faringite/microbiologia , Faringe/microbiologia , Infecções Estreptocócicas/patologia , Animais , Apoptose , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus pyogenes
8.
Nat Med ; 25(6): 968-976, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171880

RESUMO

In most cases of sporadic colorectal cancers, tumorigenesis is a multistep process, involving genomic alterations in parallel with morphologic changes. In addition, accumulating evidence suggests that the human gut microbiome is linked to the development of colorectal cancer. Here we performed fecal metagenomic and metabolomic studies on samples from a large cohort of 616 participants who underwent colonoscopy to assess taxonomic and functional characteristics of gut microbiota and metabolites. Microbiome and metabolome shifts were apparent in cases of multiple polypoid adenomas and intramucosal carcinomas, in addition to more advanced lesions. We found two distinct patterns of microbiome elevations. First, the relative abundance of Fusobacterium nucleatum spp. was significantly (P < 0.005) elevated continuously from intramucosal carcinoma to more advanced stages. Second, Atopobium parvulum and Actinomyces odontolyticus, which co-occurred in intramucosal carcinomas, were significantly (P < 0.005) increased only in multiple polypoid adenomas and/or intramucosal carcinomas. Metabolome analyses showed that branched-chain amino acids and phenylalanine were significantly (P < 0.005) increased in intramucosal carcinomas and bile acids, including deoxycholate, were significantly (P < 0.005) elevated in multiple polypoid adenomas and/or intramucosal carcinomas. We identified metagenomic and metabolomic markers to discriminate cases of intramucosal carcinoma from the healthy controls. Our large-cohort multi-omics data indicate that shifts in the microbiome and metabolome occur from the very early stages of the development of colorectal cancer, which is of possible etiological and diagnostic importance.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Adulto , Idoso , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Progressão da Doença , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Metabolômica , Metagenômica , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Adulto Jovem
9.
Microbiol Resour Announc ; 8(14)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948470

RESUMO

A nonidentifiable mycolicibacterium was isolated from a malignant lymphoma patient treated with intensive chemoimmunotherapy. Multilocus sequence analysis showed that this isolate was close to "Mycolicibacterium (Mycobacterium) ratisbonense," but the details of this species were still unknown. Here, we report the draft genome sequence data of Mycolicibacterium sp. strain NCC-Tsukiji.

10.
Int J Syst Evol Microbiol ; 68(8): 2437-2442, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29939124

RESUMO

Among non-tuberculous mycobacteria (NTM), the Mycobacterium simiae complex is one of the largest groups, consisting of 18 species of slow-growing mycobacteria. In 2009, a case of NTM-associated infectious skin disease was reported in Shiga Prefecture, Japan. The patient presented with scattered nodules on the chest, back and extremities, and an M. simiae-like organism was isolated from skin biopsy specimens obtained from one of these lesions. Based on several assessments, including multiple-gene analyses, biochemical characterization and drug susceptibility testing, we concluded that this isolate represented a novel species of NTM, and proposed the name 'Mycobacterium shigaense'. Since 2009, five more cases of NTM-associated infectious disease in which there was a suspected involvement of 'M. shigaense' have been reported. Interestingly, four of these six cases occurred in Shiga Prefecture. Here we performed multiple-gene phylogenetic analyses, physiological and biochemical characterization tests, drug susceptibility tests, and profiling of proteins, fatty acids and mycolic acids of eight clinical isolates from the six suspected 'M. shigaense' cases. The results confirmed that all of the clinical isolates were 'M. shigaense', a slow-growing, scotochromogenic species. Here M. shigaense is validly proposed as a new member of the M. simiae complex, with the type strain being UN-152T (=JCM 32072T=DSM 46748T).


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/classificação , Filogenia , Dermatopatias Bacterianas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Japão , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Ácidos Micólicos/química , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
ISME J ; 12(5): 1329-1343, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410487

RESUMO

Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.


Assuntos
Flavobacteriaceae/genética , Rodopsinas Microbianas/genética , Genoma Bacteriano , Processos Fototróficos , Água do Mar/microbiologia , Luz Solar
12.
J Exp Med ; 214(12): 3507-3518, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29066578

RESUMO

The intestinal microbial ecosystem is actively regulated by Paneth cell-derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host-microbiota cross talk toward therapeutic benefits.


Assuntos
Disbiose/etiologia , Disbiose/prevenção & controle , Doença Enxerto-Hospedeiro/complicações , Celulas de Paneth/patologia , Trombospondinas/farmacologia , Trombospondinas/uso terapêutico , Administração Oral , Animais , Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Disbiose/patologia , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , alfa-Defensinas/metabolismo
13.
PLoS One ; 12(6): e0180053, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662104

RESUMO

A novel strain Vibrio aphrogenes sp. nov. strain CA-1004T isolated from the surface of seaweed collected on the coast of Mie Prefecture in 1994 [1] was characterized using polyphasic taxonomy including multilocus sequence analysis (MLSA) and a genome based comparison. Both phylogenetic analyses on the basis of 16S rRNA gene sequences and MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the strain could be placed in the Rumoiensis clade in the genus Vibrio. Sequence similarities of the 16S rRNA gene and the multilocus genes against the Rumoiensis clade members, V. rumoiensis, V. algivorus, V. casei, and V. litoralis, were low enough to propose V. aphrogenes sp. nov. strain CA-1004T as a separate species. The experimental DNA-DNA hybridization data also revealed that the strain CA-1004T was separate from four known Rumoiensis clade species. The G+C content of the V. aphrogenes strain was determined as 42.1% based on the genome sequence. Major traits of the strain were non-motile, halophilic, fermentative, alginolytic, and gas production. A total of 27 traits (motility, growth temperature range, amylase, alginase and lipase productions, and assimilation of 19 carbon compounds) distinguished the strain from the other species in the Rumoiensis clade. The name V. aphrogenes sp. nov. is proposed for this species in the Rumoiensis clade, with CA-1004T as the type strain (JCM 31643T = DSM 103759T).


Assuntos
Alga Marinha/microbiologia , Vibrio/genética , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Vibrio/classificação
14.
PLoS One ; 10(11): e0141658, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571296

RESUMO

Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904-1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 µg/ml, 0.5 µg/ml, and 2.0-7.5 µg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904-1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904-1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.


Assuntos
Antituberculosos/farmacologia , Vacina BCG/química , Luciferases/metabolismo , Testes de Sensibilidade Microbiana/métodos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Actinomyces , Trifosfato de Adenosina/química , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Complexo Mycobacterium avium/genética , Oligopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray , Streptomyces
16.
Microbiology (Reading) ; 153(Pt 6): 1743-1755, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17526832

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma is that actin polymerization by EPEC is achieved following tyrosine phosphorylation of Tir, recruitment of Nck and activation of neuronal Wiskott-Aldrich syndrome protein (N-WASP). In closely related enterohaemorrhagic E. coli (EHEC) O157 : H7, actin polymerization is triggered following recruitment of the T3SS effector TccP/EspF(U) (instead of Nck) and local activation of N-WASP. In addition to tccP, typical EHEC O157 : H7 harbour a pseudogene (tccP2). However, it has recently been found that atypical, sorbitol-fermenting EHEC O157 carries functional tccP and tccP2 alleles. Interestingly, intact tccP2 has been identified in the incomplete genome sequence of the prototype EPEC strain B171 (serotype O111 : H-), but it is missing from another prototype EPEC strain E2348/69 (O127 : H7). E2348/69 and B171 belong to two distinct evolutionary lineages of EPEC, termed EPEC 1 and EPEC 2, respectively. Here, it is reported that while both EPEC 1 and EPEC 2 triggered actin polymerization via the Nck pathway, tccP2 was found in 26 of 27 (96.2 %) strains belonging to EPEC 2, and in none of the 34 strains belonging to EPEC 1. It was shown that TccP2 was: (i) translocated by the locus of enterocyte effacement-encoded T3SS; (ii) localized at the tip of the EPEC 2-induced actin-rich pedestals in infected HeLa cells and human intestinal in vitro organ cultures ex vivo; and (iii) essential for actin polymerization in infected Nck-/- cells. Therefore, unlike strains belonging to EPEC 1, strains belonging to EPEC 2 can trigger actin polymerization using both Nck and TccP2 actin-polymerization signalling cascades.


Assuntos
Actinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Células HeLa , Humanos , Intestino Delgado/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Proteínas Oncogênicas/metabolismo , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Transporte Proteico , Alinhamento de Sequência , Análise de Sequência de DNA
17.
Infect Immun ; 75(2): 604-12, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17101643

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Proteínas de Transporte/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Células Epiteliais/química , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Análise de Sequência de DNA
18.
Mol Microbiol ; 61(1): 194-205, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16824105

RESUMO

For a new pathogen to emerge, it must acquire both virulence genes and a system for responding to changes in environmental conditions. Starvation of nutrients or growth arrest induces the stringent response in Escherichia coli, via increased ppGpp. We found the adherence capacity of enterohaemorrhagic E. coli (EHEC) and gene expression in the locus of enterocyte effacement (LEE) were enhanced by a downshift in nutrients or by entry into the stationary growth phase, both of which increase the ppGpp concentration. The activation was dependent on relA and spoT, which encode enzymes for the synthesis and degradation of ppGpp, and on dksA, which encodes an RNA polymerase accessory protein required for the stringent response. Upon induction of RelA expression, LEE gene transcription was activated within 20 min, even without starvation. The expression of two LEE transcriptional regulators, Ler and Pch, was activated by ppGpp and essential for the enhancement of LEE gene expression. In addition, the ler and pch promoters were directly activated by ppGpp in an in vitro transcription system. These findings suggest that the regulation of virulence genes in EHEC is integrated with E. coli's stringent response system, through the regulation of virulence regulatory genes.


Assuntos
Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Ilhas Genômicas/genética , Fosfoproteínas/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Células CACO-2 , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Guanosina Tetrafosfato/metabolismo , Humanos , Fosfoproteínas/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA