Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nanoscale ; 15(23): 10159-10175, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272342

RESUMO

Enzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD+ → NADH) by glucose dehydrogenase (GDH) is enhanced ca. 5-fold when the enzyme is displayed on nanocrystalline semiconductor quantum dots (QDs) which are utilized as prototypical NP materials in our experimental assays. Coupling this enzymatic step with NADH-dependent lactate dehydrogenase (LDH) conversion of lactate to pyruvate also increases the latter's rate by a similar amount when both enzymes were jointly incorporated into self-assembled QD-based nanoclusters. Detailed agarose gel mobility assays and transmission electron microscopy imaging studies confirm that both tetrameric enzymes assemble to and crosslink the QDs into structured nanoclusters via their multiple-pendant terminal (His)6 sequences. Unexpectedly, control experiments utilizing blocking peptides to prevent enzyme-crosslinking of QDs resulted in even further enhancement of individual enzyme on-QD kinetic activity. This activity was also probed revealing that 200-fold excess peptide/QD addition enhanced individual GDH and LDH on-QD kcat a further 2- and 1.5×, respectively, above that seen just by QD display to a maximum of ∼10-fold GDH enhancement. The potential implications for how these enzyme kinetics-enhancing phenomena can be applied to single and multi-enzyme cascaded reactions in the context of cofactor recycling and cell-free synthetic biology are discussed.


Assuntos
Nanopartículas , Pontos Quânticos , NAD/química , Cinética , Nanopartículas/química , Pontos Quânticos/química , L-Lactato Desidrogenase/metabolismo , Peptídeos/química
2.
Bioconjug Chem ; 34(2): 405-413, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731145

RESUMO

In mammalian cells, plasma membrane potential plays vital roles in both physiology and pathology and it is controlled by a network of membrane-resident ion channels. There is considerable interest in the use of nanoparticles (NPs) to control biological functions, including the modulation of membrane potential. The photoexcitation of gold NPs (AuNPs) tethered close to the plasma membrane has been shown to induce membrane depolarization via localized heating of the AuNP surface coupled with the opening of voltage-gated sodium channels. Previous work has employed spherical AuNPs (AuNS) with absorption in the 500-600 nm range for this purpose. However, AuNP materials with absorption at longer wavelengths [e.g., near-infrared (NIR)] would enable greater tissue penetration depth in vivo. We show here the use of new anisotropic-shaped AuNPs [gold nanoflowers (AuNFs)] with broad absorption spanning into the NIR part of the spectrum (∼650-1000 nm). The AuNFs are directly synthesized with bidentate thiolate ligands, which preserves the AuNF's shape and colloidal stability, while facilitating conjugation to biomolecules. We describe the characterization of the AuNF particles and demonstrate that they adhere to the plasma membrane when bioconjugated to PEGylated cholesterol (PEG-Chol) moieties. The AuNF-PEG-Chol mediated the depolarization of rat adrenal medulla pheochromocytoma (PC-12) neuron-like cells more effectively than AuNS-PEG-Chol and unconjugated AuNS and AuNF when photoexcited at ∼561 or ∼640 nm. Importantly, AuNF induction of depolarization had no impact on cellular viability. This work demonstrates anisotropic AuNFs as an enabling nanomaterial for use in cellular depolarization and the spatiotemporal control of cellular activity.


Assuntos
Nanopartículas Metálicas , Ratos , Animais , Ouro , Potenciais da Membrana , Polietilenoglicóis , Mamíferos
3.
Mem. Inst. Oswaldo Cruz ; 118: e220263, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440673

RESUMO

BACKGROUND Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity. OBJECTIVES Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease. METHODS To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface. FINDINGS As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism. MAIN CONCLUSION These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.

4.
ACS Nano ; 15(5): 9101-9110, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33955735

RESUMO

DNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed. As an alternative, the conjugation of nanoparticle-binding peptides and peptide nucleic acids (PNA) can produce peptide-PNA with distinct NP-binding and DNA-binding domains. Here, we demonstrate a simple application of this method to conjugate semiconductor quantum dots (QDs) directly to DNA nanostructures by means of a peptide-PNA with a six-histidine peptide motif that binds to the QD surface. With this method, we achieved greater than 90% capture efficiency for multiple QDs on a single DNA nanostructure while preserving both site specificity and precise spatial control of QD placement. Additionally, we investigated the effects of peptide-PNA charge on the efficacy of QD immobilization in suboptimal conditions. The results validate peptide-PNA as a viable alternative to ssDNA conjugation of NPs and warrant studies of other NP-binding peptides for peptide-PNA conjugation.


Assuntos
Nanoestruturas , Ácidos Nucleicos Peptídicos , Pontos Quânticos , DNA , Peptídeos
5.
Bioconjug Chem ; 31(3): 567-576, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31894966

RESUMO

The photoactivation of plasma-membrane-tethered gold nanoparticles (AuNPs) for the photothermally driven depolarization of membrane potential has recently emerged as a new platform for the controlled actuation of electrically active cells. In this report, we characterize the relationship between AuNP concentration and AuNP-membrane separation distance with the efficiency of photoactivated plasma membrane depolarization. We show in differentiated rat pheochromocytoma (PC-12) cells that AuNPs capped with poly(ethylene glycol) (PEG)-cholesterol ligands localize to the plasma membrane and remain resident for up to 1 h. The efficiency of AuNP-mediated depolarization is directly dependent on the concentration of the NPs on the cell surface. We further show that the efficiency of AuNP-mediated photothermal depolarization of membrane potential is directly dependent on the tethering distance between the AuNP and the plasma membrane, which we control by iteratively tuning the length of the PEG linker. Importantly, the AuNP conjugates do not adversely affect cell viability under the photoactivation conditions required for membrane depolarization. Our results demonstrate the fine control that can be elicited over AuNP bioconjugates and establishes principles for the rational design of functional nanomaterials for the control of electrically excitable cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ouro/química , Ouro/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Colesterol/química , Relação Dose-Resposta a Droga , Células PC12 , Polietilenoglicóis/química , Ratos
6.
Small ; 15(14): e1805384, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30803148

RESUMO

DNA can process information through sequence-based reorganization but cannot typically receive input information from most biological processes and translate that into DNA compatible language. Coupling DNA to a substrate responsive to biological events can address this limitation. A two-component sensor incorporating a chimeric peptide-DNA substrate is evaluated here as a protease-to-DNA signal convertor which transduces protease activity through DNA gates that discriminate between different input proteases. Acceptor dye-labeled peptide-DNAs are assembled onto semiconductor quantum dot (QD) donors as the input gate. Addition of trypsin or chymotrypsin cleaves their cognate peptide sequence altering the efficiency of Förster resonance energy transfer (FRET) with the QD and frees a DNA output which interacts with a tetrahedral output gate. Downstream output gate rearrangement results in FRET sensitization of a new acceptor dye. Following characterization of component assembly and optimization of individual steps, sensor ability to discriminate between the two proteases is confirmed along with effects from joint interactions where potential for cross-talk is highest. Processing multiple bits of information for a sensing outcome provides more confidence than relying on a single change especially for the discrimination between different targets. Coupling other substrates to DNA that respond similarly could help target other types of enzymes.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/metabolismo , Nanotecnologia/instrumentação , Peptídeo Hidrolases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Nanopartículas/ultraestrutura , Peptídeos/química , Pontos Quânticos/química , Tripsina/metabolismo
7.
Bioconjug Chem ; 30(3): 525-530, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735042

RESUMO

Multidrug resistance (MDR) is a significant challenge in the treatment of many types of cancers as membrane-associated transporters actively pump drugs out of the cell, limiting therapeutic efficacy. While nanoparticle (NP)-based therapeutics have emerged as a mechanism for overcoming MDR, they often rely on the delivery of multiple anticancer drugs, nucleic acid hybrids, or MDR pump inhibitors. The effectiveness of these strategies, however, can be limited by their off-target toxicity or the need for genetic transfection. In this paper, we describe a NP-peptide-drug bioconjugate that achieves significant cell killing in MDR-positive cancer cells without the need for additional drugs. We use a quantum dot (QD) as a central scaffold to append two species of peptide, a cell-uptake peptide to facilitate endocytic internalization and a peptide-drug conjugate that is susceptible to cleavage by esterases found within the endocytic pathway. This approach relies on spatiotemporal control over drug release, where endosomes traffic drug away from membrane-resident pumps and release it closer to the nucleus. Cellular internalization studies showed high uptake of the NP-drug complex and nuclear localization of the drug after 48 h in MDR-positive cells. Additionally, cellular proliferation assays demonstrated a 40% decrease in cell viability for the NP-drug bioconjugate compared to free drug, confirming the utility of this system in overcoming MDR in cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanoconjugados/química , Peptídeos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacocinética
8.
Bioconjug Chem ; 29(1): 136-148, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29191007

RESUMO

Nanoparticle (NP)-mediated drug delivery (NMDD) has emerged as a novel method to overcome the limitations of traditional systemic delivery of therapeutics, including the controlled release of the NP-associated drug cargo. Currently, our most advanced understanding of how to control NP-associated cargos is in the context of soft nanoparticles (e.g., liposomes), but less is known about controlling the release of cargos from the surface of hard NPs (e.g., gold NPs). Here we employ a semiconductor quantum dot (QD) as a prototypical hard NP platform and use intracellularly triggered actuation to achieve spatiotemporal control of drug release and modulation of drug efficacy. Conjugated to the QD are two peptides: (1) a cell-penetrating peptide (CPP) that facilitates uptake of the conjugate into the endocytic pathway and (2) a display peptide conjugated to doxorubicin (DOX) via three different linkages (ester, disulfide, and hydrazone) that are responsive to enzymatic cleavage, reducing conditions, and low pH, respectively. Formation of the QD-[peptide-DOX]-CPP complex is driven by self-assembly that allows control over both the ratio of each peptide species conjugated to the QD and the eventual drug dose delivered to cells. Förster resonance energy transfer assays confirmed successful assembly of the QD-peptide complexes and functionality of the linkages. Confocal microscopy was employed to visualize residence of the QD-[peptide-DOX]-CPP complexes in the endocytic pathway, and distinct differences in DOX localization were noted for the ester linkage, which showed clear signs of nuclear delivery versus the hydrazone, disulfide, and amide control. Finally, delivery of the QD-[peptide-DOX]-CPP conjugate resulted in cytotoxicity for the ester linkage that was comparable to free DOX. Attachment of DOX via the hydrazone linkage facilitated intermediary toxicity, while the disulfide and amide control linkages showed minimal toxicity. Our data demonstrate the utility of hard NP-peptide bioconjugates to function as multifunctional scaffolds for simultaneous control over cellular drug uptake and toxicity and the vital role played by the nature of the chemical linkage that appends the drug to the NP carrier.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/química , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Pontos Quânticos/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Endocitose , Células HeLa , Humanos , Nanoconjugados/química , Neoplasias/tratamento farmacológico , Peptídeos/química
9.
ACS Nano ; 11(6): 5598-5613, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28514167

RESUMO

We report the development of a quantum dot (QD)-peptide-fullerene (C60) electron transfer (ET)-based nanobioconjugate for the visualization of membrane potential in living cells. The bioconjugate is composed of (1) a central QD electron donor, (2) a membrane-inserting peptidyl linker, and (3) a C60 electron acceptor. The photoexcited QD donor engages in ET with the C60 acceptor, resulting in quenching of QD photoluminescence (PL) that tracks positively with the number of C60 moieties arrayed around the QD. The nature of the QD-capping ligand also modulates the quenching efficiency; a neutral ligand coating facilitates greater QD quenching than a negatively charged carboxylated ligand. Steady-state photophysical characterization confirms an ET-driven process between the donor-acceptor pair. When introduced to cells, the amphiphilic QD-peptide-C60 bioconjugate labels the plasma membrane by insertion of the peptide-C60 portion into the hydrophobic bilayer, while the hydrophilic QD sits on the exofacial side of the membrane. Depolarization of cellular membrane potential augments the ET process, which is manifested as further quenching of QD PL. We demonstrate in HeLa cells, PC12 cells, and primary cortical neurons significant QD PL quenching (ΔF/F0 of 2-20% depending on the QD-C60 separation distance) in response to membrane depolarization with KCl. Further, we show the ability to use the QD-peptide-C60 probe in combination with conventional voltage-sensitive dyes (VSDs) for simultaneous two-channel imaging of membrane potential. In in vivo imaging of cortical electrical stimulation, the optical response of the optimal QD-peptide-C60 configuration exhibits temporal responsivity to electrical stimulation similar to that of VSDs. Notably, however, the QD-peptide-C60 construct displays 20- to 40-fold greater ΔF/F0 than VSDs. The tractable nature of the QD-peptide-C60 system offers the advantages of ease of assembly, large ΔF/F0, enhanced photostability, and high throughput without the need for complicated organic synthesis or genetic engineering, respectively, that is required of traditional VSDs and fluorescent protein constructs.


Assuntos
Fulerenos/química , Potenciais da Membrana , Imagem Óptica/métodos , Peptídeos/química , Pontos Quânticos/química , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Células PC12 , Ratos , Espectrometria de Fluorescência/métodos
10.
Nat Nanotechnol ; 11(5): 479-86, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26925827

RESUMO

Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.


Assuntos
Cádmio/toxicidade , Modelos Teóricos , Pontos Quânticos/toxicidade , Animais , Cádmio/química , Sobrevivência Celular , Humanos , Concentração Inibidora 50 , Pontos Quânticos/química , Fluxo de Trabalho
11.
ACS Nano ; 7(10): 9489-505, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24128175

RESUMO

Understanding how semiconductor quantum dots (QDs) engage in photoinduced energy transfer with carbon allotropes is necessary for enhanced performance in solar cells and other optoelectronic devices along with the potential to create new types of (bio)sensors. Here, we systematically investigate energy transfer interactions between C60 fullerenes and four different QDs, composed of CdSe/ZnS (type I) and CdSe/CdS/ZnS (quasi type II), with emission maxima ranging from 530 to 630 nm. C60-pyrrolidine tris-acid was first coupled to the N-terminus of a hexahistidine-terminated peptide via carbodiimide chemistry to yield a C60-labeled peptide (pepC60). This peptide provided the critical means to achieve ratiometric self-assembly of the QD-(pepC60) nanoheterostructures by exploiting metal affinity coordination to the QD surface. Controlled QD-(pepC60)N bioconjugates were prepared by discretely increasing the ratio (N) of pepC60 assembled per QD in mixtures of dimethyl sulfoxide and buffer; this mixed organic/aqueous approach helped alleviate issues of C60 solubility. An extensive set of control experiments were initially performed to verify the specific and ratiometric nature of QD-(pepC60)N assembly. Photoinitiated energy transfer in these hybrid organic-inorganic systems was then interrogated using steady-state and time-resolved fluorescence along with ultrafast transient absorption spectroscopy. Coordination of pepC60 to the QD results in QD PL quenching that directly tracks with the number of peptides displayed around the QD. A detailed photophysical analysis suggests a competition between electron transfer and Förster resonance energy transfer from the QD to the C60 that is dependent upon a complex interplay of pepC60 ratio per QD, the presence of underlying spectral overlap, and contributions from QD size. These results highlight several important factors that must be considered when designing QD-donor/C60-acceptor systems for potential optoelectronic and biosensing applications.


Assuntos
Fulerenos/química , Pontos Quânticos , Semicondutores , Transporte de Elétrons , Transferência Ressonante de Energia de Fluorescência , Peptídeos/química , Análise Espectral/métodos
12.
ACS Nano ; 5(7): 5579-93, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21692444

RESUMO

Effective biological application of nanocrystalline semiconductor quantum dots continues to be hampered by the lack of easily implemented and widely applicable labeling chemistries. Here, we introduce two new orthogonal nanocrystal bioconjugation chemistries that overcome many of the labeling issues associated with currently utilized approaches. These chemistries specifically target either (1) the ubiquitous amines found on proteins or (2) thiols present in either antibody hinge regions or recombinantly introduced into other proteins to facilitate site-specific labeling. The amine chemistry incorporates aniline-catalyzed hydrazone bond formation, while the sulfhydryl chemistry utilizes nanocrystals displaying surface activated maleimide groups. Both reactive chemistries are rapidly implemented, yielding purified nanocrystal-protein bioconjugates in as little as 3 h. Following initial characterization of the nanocrystal materials, the wide applicability and strong multiplexing potential of these chemistries are demonstrated in an array of applications including immunoassays, immunolabeling in both cellular and tissue samples, in vivo cellular uptake, and flow cytometry. Side-by-side comparison of the immunolabeled cells suggested a functional equivalence between results generated with the amine and thiol-labeled antibody-nanocrystal bioconjugates in that format. Three-color labeling was achieved in the cellular uptake format, with no significant toxicity observed while simultaneous five-color labeling of different epitopes was demonstrated for the immunolabeled tissue sample. Novel labeling applications are also facilitated by these chemistries, as highlighted by the ability to directly label cellular membranes in adherent cell cultures with the thiol-reactive chemistry.


Assuntos
Pontos Quânticos , Semicondutores , Coloração e Rotulagem/métodos , Aminas/química , Animais , Transporte Biológico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Cor , Enterotoxinas/análise , Citometria de Fluxo , Humanos , Imunoensaio , Imuno-Histoquímica , Especificidade por Substrato , Compostos de Sulfidrila/química
14.
Anal Chem ; 78(6): 1913-20, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16536428

RESUMO

We demonstrate the use of gold nanoparticles (AuNPs) to enhance the secondary ion emission of peptides in time-of-flight secondary ion mass spectrometry (TOF-SIMS). The signal intensity of peptides adsorbed onto AuNPs was significantly increased when compared to that of self-assembled monolayers (SAMs). This gold nanoparticle-enhanced SIMS, termed NE-SIMS, enabled the sensitive detection of subtle modifications of peptides, such as phosphorylation. From a quantitative analysis of the amounts of adsorbed peptides and AuNPs on SAMs using quartz crystal microbalance and surface plasmon resonance spectroscopy, the ratio of peptide molecule to AuNP on amine-SAMs was revealed to be 18-19:1. When considering the ratio of peptide to matrix (1:10(3)-10(6)) employed in a matrix-enhanced SIMS, the use of AuNPs gave rise to a significantly increased secondary ion emission of peptides. Peptides were adsorbed onto patterned AuNPs on SAMs using a microfluidic system, and well-contrasted molecular ion images were obtained. NE-SIMS is expected to be applied to a chip-based analysis of modification of biomolecules in a label-free manner.


Assuntos
Ouro/química , Membranas Artificiais , Nanopartículas/química , Peptídeos/análise , Espectrometria de Massa de Íon Secundário/métodos , Tamanho da Partícula , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA