Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687520

RESUMO

Hot-dip Al-Si alloy coatings with excellent resistance to corrosion and high-temperature oxidation have emerged as promising lightweight substitutes for conventional corrosion-resistant coatings. The introduction of Mg can be an effective strategy for enhancing the sacrificial protection capability of Al-Si coatings. In this study, the effects of Mg addition on the morphology, electrochemical behavior, and mechanical properties of Al-Si coatings were investigated, along with the Mg-content optimization of the coating layer. Adding Mg promoted the formation of finely distributed eutectic intermetallic phases, such as Al/Mg2Si and the primary Mg2Si phase. Notably, the Mg2Si phase coarsened significantly when ≥15 wt.% of Mg was added. In addition, an Al3Mg2 intermetallic compound was observed in coating layers containing >20 wt.% of Mg, reducing the adhesion of the coating layers. Samples containing 5-10 wt.% of Mg exhibited excellent corrosion resistance (owing to a uniform distribution of the fine eutectic Al/Mg2Si phase and the formation of stable corrosion products), whereas those containing 20 wt.% of Mg exhibited unremarkable corrosion resistance (owing to the formation of an Al3Mg2 phase that is susceptible to intergranular corrosion).

2.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832158

RESUMO

Structural-adhesive-assisted DeltaSpot welding was used to improve the weldability and mechanical properties of dissimilar joints between 6061 aluminum alloy and galvannealed HSLA steel. Evaluation of the spot-weld-bonded surfaces from lap shear tests after long-term exposure to chloride and a humid atmosphere (5% NaCl, 35 °C) indicated that the long-term mechanical reliability of the dissimilar weld in a corrosive environment depends strongly on the adhesive-Al6061 alloy bond strength. Corrosive electrolyte infiltrated the epoxy-based adhesive/Al alloy interface, disrupting the chemical interactions and decreasing the adhesion via anodic undercutting of the Al alloy. Due to localized electrochemical galvanic reactions, the surrounding nugget matrix suffered accelerated anodic dissolution, resulting in an Al6061-T6 alloy plate with degraded adhesive strength and mechanical properties. KrF excimer laser irradiation of the Al alloy before adhesive bonding removed the weakly bonded native oxidic overlayers and altered the substrate topography. This afforded a low electrolyte permeability and prevented adhesive delamination, thereby enhancing the long-term stability of the chemical interactions between the adhesive and Al alloy substrate. The results demonstrate the application of excimer laser irradiation as a simple and environmentally friendly processing technology for robust adhesion and reliable bonding between 6061 aluminum alloy and galvannealed steel.

3.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297288

RESUMO

Three-dimensional (3D) culture of tumor spheroids (TSs) within the extracellular matrix (ECM) represents a microtumor model that recapitulates human solid tumors in vivo, and is useful for 3D multiplex phenotypic analysis. However, the low efficiency of 3D culture and limited 3D visualization of microtumor specimens impose technical hurdles for the evaluation of TS-based phenotypic analysis. Here, we report a 3D microtumor culture-to-3D visualization system using a minipillar array chip combined with a tissue optical clearing (TOC) method for high-content phenotypic analysis of microtumors. To prove the utility of this method, phenotypic changes in TSs of human pancreatic cancer cells were determined by co-culture with cancer-associated fibroblasts and M2-type tumor-associated macrophages. Significant improvement was achieved in immunostaining and optical transmission in each TS as well as the entire microtumor specimen, enabling optimization in image-based analysis of the morphology, structural organization, and protein expression in cancer cells and the ECM. Changes in the invasive phenotype, including cellular morphology and expression of epithelial-mesenchymal transition-related proteins and drug-induced apoptosis under stromal cell co-culture were also successfully analyzed. Overall, our study demonstrates that a minipillar array chip combined with TOC offers a novel system for 3D culture-to-3D visualization of microtumors to facilitate high-content phenotypic analysis.

4.
J Exp Clin Cancer Res ; 38(1): 258, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200779

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich carcinoma, and pancreatic stellate cells (PSCs) are a major component of this dense stroma. PSCs play significant roles in metastatic progression and chemoresistance through cross-talk with cancer cells. Preclinical in vitro tumor model of invasive phenotype should incorporate three-dimensional (3D) culture of cancer cells and PSCs in extracellular matrix (ECM) for clinical relevance and predictability. METHODS: PANC-1 cells were cultured as tumor spheroids (TSs) using our previously developed minipillar chips, and co-cultured with PSCs, both embedded in collagen gels. Effects of PSC co-culture on ECM fiber network, invasive migration of cancer cells, and expression of epithelial-mesenchymal transition (EMT)-related proteins were examined. Conditioned media was also analyzed for secreted factors involved in cancer cell-PSC interactions. Inhibitory effect on cancer cell invasion was compared between gemcitabine and paclitaxel at an equitoxic concentration in PANC-1 TSs co-cultured with PSCs. RESULTS: Co-culture condition was optimized for the growth of TSs, activation of PSCs, and their interaction. Increase in cancer cell invasion via ECM remodeling, invadopodia formation and EMT, as well as drug resistance was recapitulated in the TS-PSC co-culture, and appeared to be mediated by cancer cell-PSC interaction via multiple secreted factors, including IL-6, IL-8, IGF-1, EGF, TIMP-1, uPA, PAI-1, and TSP-1. Compared to gemcitabine, paclitaxel showed a greater anti-invasive activity, which was attributed to suppresion of invadopodia formation in cancer cells as well as to PSC-specific cytotoxicity abrogating its paracrine signaling. CONCLUSIONS: Here, we established 3D co-culture of TSs of PANC-1 cells and PSCs using minipillar histochips as a novel tumoroid model of PDAC. Our results indicate usefulness of the present co-culture model and multiplex quantitative analysis method not only in studying the role of PSCs and their interactions with tumor cell towards metastatic progression, but also in the drug evaluation of stroma-targeting drugs.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Imunofluorescência , Humanos , Imuno-Histoquímica , Modelos Biológicos , Neoplasias Pancreáticas/tratamento farmacológico , Esferoides Celulares
5.
RSC Adv ; 8(9): 4494-4502, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539534

RESUMO

Tumor spheroids are multicellular, three-dimensional (3D) cell culture models closely mimicking the microenvironments of human tumors in vivo, thereby providing enhanced predictability, clinical relevancy of drug efficacy and the mechanism of action. Conventional confocal microscopic imaging remains inappropriate for immunohistological analysis due to current technical limits in immunostaining using antibodies and imaging cells grown in 3D multicellular contexts. Preparation of microsections of these spheroids represents a best alternative, yet their sub-millimeter size and fragility make it less practical for high-throughput screening. To address these problems, we developed a pitch-tunable 5 × 5 mini-pillar array chip for culturing and sectioning tumor spheroids in a high throughput manner. Tumor spheroids were 3D cultured in an alginate matrix using a twenty-five mini-pillar array which aligns to a 96-well. At least a few tens of spheroids per pillar were cultured and as many as 25 different treatment conditions per chip were evaluated, which indicated the high throughput manner of the 5 × 5 pillar array chip. The twenty-five mini-pillars were then rearranged to a transferring pitch so that spheroid-containing gel caps from all pillars can be embedded into a specimen block. Tissue array sections were then prepared and stained for immunohistological examination. The utility of this pitch-tunable pillar array was demonstrated by evaluating drug distribution and expression levels of several proteins following drug treatment in 3D tumor spheroids. Overall, our mini-pillar array provides a novel platform that can be useful for culturing tumor spheroids as well as for immunohistological analysis in a multiplexed and high throughput manner.

6.
J Nanosci Nanotechnol ; 14(11): 8636-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958576

RESUMO

The InP/ZnSe/ZnS multishell colloidal quantum dots (QDs) were prepared by convenient heating-up method for an emission layer of semitransparent quantum dot light-emitting diodes (QD-LEDs). The synthesized InP/ZnSe/ZnS multishell QDs exhibited an emission peak at 545 nm for clear green color with a full-width at half-maximum (FWHM) of 50 nm, and photoluminescent (PL) quantum yield (QY) of 45%. The multishell on the indium phosphide (InP) core helped increasing QY and stability by reducing interfacial defects. Using a Ca/Ag cathode, the whole QD-LEDs were semitransparent throughout the visible wavelengths. The maximum brightness and currernt efficiency of semitransparent QD-LEDs reached 587 cd/m2 and 1.52 cd/A by controlling the thickness of Ca/Ag cathode, which is comparable to the device with opaque LiF/Al cathode (1444 cd/m2 and 1.98 cd/A). The performance of our semitransparent and eco-friendly device is not matched with traditional cadmium (Cd) based QD-LEDs yet, but it shows the great potential for various window-type information displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA