Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 633(8030): 670-677, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198645

RESUMO

Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.


Assuntos
Divisão Celular Assimétrica , Linfócitos T CD8-Positivos , Diferenciação Celular , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem da Célula , Glicólise , Memória Imunológica , Imunoterapia Adotiva , Oxirredução , Proteoma/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Acta Neuropathol ; 146(2): 319-336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344701

RESUMO

Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2ßδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.


Assuntos
Autoanticorpos , Miastenia Gravis , Humanos , Receptores Colinérgicos , Células Clonais , Linfócitos B
3.
Ann Clin Transl Neurol ; 10(5): 825-831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924454

RESUMO

To compare the immunopathology of immune checkpoint inhibitor-induced myasthenia gravis (ICI-MG) and idiopathic MG, we profiled the respective AChR autoantibody pathogenic properties. Of three ICI-MG patients with AChR autoantibodies, only one showed complement activation and modulation/blocking potency, resembling idiopathic MG. In contrast, AChR autoantibody-mediated effector functions were not detected in the other two patients, questioning the role of their AChR autoantibodies as key mediators of pathology. The contrasting properties of AChR autoantibodies in these cases challenge the accuracy of serological testing in establishing definite ICI-MG diagnoses and underscore the importance of a thorough clinical assessment when evaluating ICI-related adverse events.


Assuntos
Inibidores de Checkpoint Imunológico , Miastenia Gravis , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptores Colinérgicos , Miastenia Gravis/diagnóstico , Autoanticorpos , Ativação do Complemento
4.
Immune Netw ; 22(5): e37, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381961

RESUMO

Autoimmune diseases are caused by a dysfunction of the acquired immune system. In a subset of autoimmune diseases, B cells escaping immune tolerance present autoantigen and produce cytokines and/or autoantibodies, resulting in systemic or organ-specific autoimmunity. Therefore, B cell depletion with monoclonal Abs targeting B cell lineage markers is standard care therapy for several B cell-mediated autoimmune disorders. In the last 5 years, genetically-engineered cellular immunotherapies targeting B cells have shown superior efficacy and long-term remission of B cell malignancies compared to historical clinical outcomes using B cell depletion with monoclonal Ab therapies. This has raised interest in understanding whether similar durable remission could be achieved with use of genetically-engineered cell therapies for autoimmunity. This review will focus on current human clinical trials using engineered cell therapies for B cell-associated autoimmune diseases.

5.
Acta Neuropathol Commun ; 10(1): 154, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307868

RESUMO

Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/uso terapêutico , Recidiva Local de Neoplasia , Miastenia Gravis/tratamento farmacológico , Autoanticorpos , Anticorpos Monoclonais , Células Clonais/metabolismo , Células Clonais/patologia , Receptores de Antígenos de Linfócitos B/uso terapêutico
6.
J Clin Invest ; 130(12): 6317-6324, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817591

RESUMO

Desmoglein 3 chimeric autoantibody receptor T cells (DSG3-CAART) expressing the pemphigus vulgaris (PV) autoantigen DSG3 fused to CD137-CD3ζ signaling domains, represent a precision cellular immunotherapy approach for antigen-specific B cell depletion. Here, we present definitive preclinical studies enabling a first-in-human trial of DSG3-CAART for mucosal PV. DSG3-CAART specifically lysed human anti-DSG3 B cells from PV patients and demonstrated activity consistent with a threshold dose in vivo, resulting in decreased target cell burden, decreased serum and tissue-bound autoantibodies, and increased DSG3-CAART engraftment. In a PV active immune model with physiologic anti-DSG3 IgG levels, DSG3-CAART inhibited antibody responses against pathogenic DSG3 epitopes and autoantibody binding to epithelial tissues, leading to clinical and histologic resolution of blisters. DSG3 autoantibodies stimulated DSG3-CAART IFN-γ secretion and homotypic clustering, consistent with an activated phenotype. Toxicology screens using primary human cells and high-throughput membrane proteome arrays did not identify off-target cytotoxic interactions. These preclinical data guided the trial design for DSG3-CAART and may help inform CAART preclinical development for other antibody-mediated diseases.


Assuntos
Transferência Adotiva , Linfócitos B/imunologia , Depleção Linfocítica , Pênfigo/terapia , Medicina de Precisão , Adulto , Animais , Autoanticorpos/imunologia , Linfócitos B/patologia , Desmogleína 3/genética , Desmogleína 3/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/imunologia , Isoantígenos/genética , Isoantígenos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pênfigo/genética , Pênfigo/imunologia , Pênfigo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA