Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791217

RESUMO

The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-ß production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-ß, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-ß and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-ß. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.


Assuntos
Epiderme , Animais , Epiderme/metabolismo , Epiderme/efeitos da radiação , Camundongos , Derme/metabolismo , Queratinócitos/metabolismo , Macrófagos/metabolismo , Envelhecimento da Pele/efeitos da radiação , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Humanos , Envelhecimento/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico HSP47/genética
2.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759497

RESUMO

Caveolin-1 (Cav-1) induces cellular senescence by reducing extracellular signal-regulated kinase (ERK)1/2 phosphorylation and activating p53 via inhibition of mouse double minute 2 homolog (MDM2) and sirtuin 1 (Sirt1), promoting cell cycle arrest and decreasing fibroblast proliferation and collagen synthesis. High-intensity focused ultrasound (HIFU) treatment increases collagen synthesis, rejuvenating skin. Using H2O2-induced senescent fibroblasts and the skin of 12-month-old mice, we tested the hypothesis that HIFU increases collagen production through Cav-1 modulation. HIFU was administered at 0.3, 0.5, or 0.7 J in the LINEAR and DOT modes. In both models, HIFU administration decreased Cav-1 levels, increased ERK1/2 phosphorylation, and decreased the binding of Cav-1 with both MDM2 and Sirt1. HIFU administration decreased p53 activation (acetylated p53) and p21 levels and increased cyclin D1, cyclin-dependent kinase 2, and proliferating cell nuclear antigen levels in both models. HIFU treatment increased collagen and elastin expression, collagen fiber accumulation, and elastin fiber density in aging skin, with 0.5 J in LINEAR mode resulting in the most prominent effects. HIFU treatment increased collagen synthesis to levels similar to those in Cav-1-silenced senescent fibroblasts. Our results suggest that HIFU administration increases dermal collagen and elastin fibers in aging skin via Cav-1 modulation and reduced p53 activity.


Assuntos
Caveolina 1 , Envelhecimento da Pele , Animais , Camundongos , Elastina , Peróxido de Hidrogênio , Sirtuína 1 , Proteína Supressora de Tumor p53 , Colágeno
3.
Nutrients ; 15(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375622

RESUMO

Chronic stress leads to hypothalamic-pituitary-adrenal axis dysfunction, increasing cortisol levels. Glucocorticoids (GCs) promote muscle degradation and inhibit muscle synthesis, eventually causing muscle atrophy. In this study, we aimed to evaluate whether rice germ supplemented with 30% γ-aminobutyric acid (RG) attenuates muscle atrophy in an animal model of chronic unpredictable mild stress (CUMS). We observed that CUMS raised the adrenal gland weight and serum adrenocorticotropic hormone (ACTH) and cortisol levels, and these effects were reversed by RG. CUMS also enhanced the expression of the GC receptor (GR) and GC-GR binding in the gastrocnemius muscle, which were attenuated by RG. The expression levels of muscle degradation-related signaling pathways, such as the Klf15, Redd-1, FoxO3a, Atrogin-1, and MuRF1 pathways, were enhanced by CUMS and attenuated by RG. Muscle synthesis-related signaling pathways, such as the IGF-1/AKT/mTOR/s6k/4E-BP1 pathway, were reduced by CUMS and enhanced by RG. Moreover, CUMS raised oxidative stress by enhancing the levels of iNOS and acetylated p53, which are involved in cell cycle arrest, whereas RG attenuated both iNOS and acetylated p53 levels. Cell proliferation in the gastrocnemius muscle was reduced by CUMS and enhanced by RG. The muscle weight, muscle fiber cross-sectional area, and grip strength were reduced by CUMS and enhanced by RG. Therefore, RG attenuated ACTH levels and cortisol-related muscle atrophy in CUMS animals.


Assuntos
Depressão , Oryza , Animais , Depressão/etiologia , Antidepressivos/farmacologia , Oryza/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hidrocortisona/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Hormônio Adrenocorticotrópico , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
4.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175693

RESUMO

Angiogenesis promotes rejuvenation in multiple organs, including the skin. Heat shock protein 90 (HSP90), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) are proangiogenic factors that stimulate the activities of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase 1/2 (ERK1/2). Poly-D,L-lactic acid (PDLLA), polynucleotide (PN), and calcium hydroxyapatite (CaHA) are dermal fillers that stimulate the synthesis of dermal collagen. However, it is not yet known whether these compounds promote angiogenesis, which leads to skin rejuvenation. Here, we evaluated whether PDLLA, PN, and CaHA stimulate angiogenesis and skin rejuvenation using H2O2-treated senescent macrophages and endothelial cells as an in vitro model for skin aging, and we used young and aged C57BL/6 mice as an in vivo model. Angiogenesis was evaluated via endothelial cell migration length, proliferation, and tube formation after conditioned media (CM) from senescent macrophages was treated with PDLLA, PN, or CaHA. Western blot showed decreased expression levels of HSP90, HIF-1α, and VEGF in senescent macrophages, but higher expression levels of these factors were found after treatment with PDLLA, PN, or CaHA. In addition, after exposure to CM from senescent macrophages treated with PDLLA, PN, or CaHA, senescent endothelial cells expressed higher levels of VEGF receptor 2 (VEGFR2), PI3K, phosphorylated AKT (pAKT), and phosphorylated ERK1/2 (pERK1/2) and demonstrated greater capacities for cell migration, cell proliferation, and tube formation. Based on the levels of 4-hydroxy-2-nonenal, the oxidative stress level was lower in the skin of aged mice injected with PDLLA, PN, or CaHA, while the tumor growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 expression levels; the density of collagen fibers; and the skin elasticity were higher in the skin of aged mice injected with PDLLA, PN, or CaHA. These effects were greater in PDLLA than in PN or CaHA. In conclusion, our results are consistent with the hypothesis that PDLLA stimulates angiogenesis, leading to the rejuvenation of aged skin. Our study is the first to show that PDLLA, PN, or CaHA can result in angiogenesis in the aged skin, possibly by increasing the levels of HSP90, HIF-1α, and VEGF and increasing collagen synthesis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Envelhecimento da Pele , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/metabolismo , Neovascularização Patológica/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
5.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174720

RESUMO

Poly-L-lactic acid (PLLA) fillers correct cutaneous volume loss by stimulating fibroblasts to synthesize collagen and by augmenting the volume. PLLA triggers the macrophage-induced activation of fibroblasts that secrete transforming growth factor-ß (TGF-ß). However, whether M2 macrophage polarization is involved in PLLA-induced collagen synthesis via fibroblast activation in aged skin is not known. Therefore, we evaluated the effect of PLLA on dermal collagen synthesis via M2 polarization in an H2O2-induced cellular senescence model and aged animal skin. H2O2-treated macrophages had increased expression levels of the M1 marker CD80 and decreased expression levels of the M2 marker CD163, which were reversed by PLLA. The expression levels of interleukin (IL)-4 and IL-13, which mediate M2 polarization, were decreased in H2O2-treated macrophages and increased upon the PLLA treatment. CD163, IL-4, and IL-13 expression levels were decreased in aged skin, but increased after the PLLA treatment. The expression levels of TGF-ß, pSMAD2/SMAD2, connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), collagen type 1A1 (COL1A1), and COL3A1 were also decreased in aged skin, but increased after the PLLA treatment. Moreover, PLLA upregulated phosphatidylinositol 3-kinase p85α (PI3-kinase p85α)/protein kinase B (AKT) signaling, leading to fibroblast proliferation. PLLA decreased the expression of matrix metalloproteinase (MMP) 2 and MMP3, which destroy collagen and elastin fibers in aged skin. The amount of collagen and elastin fibers in aged skin increased following the PLLA treatment. In conclusion, PLLA causes M2 polarization by increasing IL-4 and IL-13 levels and upregulating TGF-ß expression and collagen synthesis in aged skin.


Assuntos
Elastina , Interleucina-4 , Animais , Interleucina-4/metabolismo , Elastina/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Interleucina-13/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Macrófagos/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982581

RESUMO

Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation's activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.


Assuntos
Melaninas , Pigmentação da Pele , Animais , Trifosfato de Adenosina/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Transdução de Sinais , Raios Ultravioleta
7.
Biomolecules ; 13(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830763

RESUMO

High-intensity focused ultrasound (HIFU) leads to decreased subcutaneous adipose tissue (SAT) thickness via heat-induced adipocyte necrosis. Heat can induce adipocyte apoptosis and autophagy, and it is known that nuclear or mitochondrial p53 is involved in apoptosis and autophagy. However, whether HIFU leads to apoptosis or autophagy is unclear. We evaluated whether HIFU decreases SAT thickness via p53-related apoptosis or autophagy in high-fat diet (HFD)-fed animals. The expression of nuclear and mitochondrial p53 was increased by HIFU. HIFU also led to decreased expression of BCL2/BCL-xL (an antiapoptotic signal), increased expression of BAX/BAK (an apoptotic signal), increased levels of cleaved caspase 3/9, and increased numbers of apoptotic cells as evaluated by TUNEL assay. Furthermore, HIFU led to increased levels of ATG5, BECN1, and LC3II/LC3I, and decreased levels of p62, a marker of increased autophagy. The thickness of SAT was decreased by HIFU. In conclusion, HIFU led to nuclear and mitochondrial p53 expression, which led to apoptosis and autophagy, and eventually decreased SAT thickness in HFD-fed animals.


Assuntos
Autofagia , Proteína Supressora de Tumor p53 , Animais , Apoptose , Gordura Subcutânea , Adipócitos
8.
Nutrients ; 14(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558541

RESUMO

Stress-induced neuroinflammation is widely regarded as one of the primary causes of depression. Gamma-aminobutyric acid (GABA)-enriched foods relieve stress and reduce inflammatory reactions. This study aimed to evaluate whether rice germ with 30% GABA (RG) reduced neuroinflammation in mice exposed to chronic unpredictable mild stress (CUMS). CUMS mice were administered 40, 90, and 140 mg/kg of RG. CUMS increased serum and hypothalamic pro-inflammatory cytokine (TNF-α and IL-6) levels, which were decreased by RG. In the hypothalamus, CUMS elevated M1-type microglia markers of CD86 and NF-κB, whereas RG lowered these levels. The expression levels of NLRP3 inflammasome complex (NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1), IL-1ß, and IL-18 were increased in the hypothalamus of CUMS mice and decreased by RG. RG attenuated depressive-like behaviors in CUMS mice, as measured by the forced swim test and tail suspension test. In conclusion, RG decreased hypothalamic inflammation-related signals, such as TNF-α, IL-6, M1 polarization, NF-κB, NLRP3 inflammasome complex, caspase-1, IL-1ß, and IL-18, to diminish depressive-like behavior.


Assuntos
Depressão , Oryza , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Antidepressivos/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Oryza/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa , Interleucina-6 , Inflamação , Ácido gama-Aminobutírico , Caspases , Estresse Psicológico/complicações , Modelos Animais de Doenças
9.
Mar Drugs ; 20(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35621931

RESUMO

The in vitro capacity of Ishige okamurae extract (IO) to improve impaired muscle function has been previously examined. However, the mechanism underlying IO-mediated muscle protein metabolism and the role of its component, Ishophloroglucin A (IPA), in mice with dexamethasone (Dexa)-induced muscle atrophy remains unknown. In the present study, we evaluated the effect of IO and IPA supplementation on Dexa-induced muscle atrophy by assessing muscle protein metabolism in gastrocnemius and soleus muscles of mice. IO and IPA supplementation improved the Dexa-induced decrease in muscle weight and width, leading to enhanced grip strength. In addition, IO and IPA supplementation regulated impaired protein synthesis (PI3K and Akt) or degradation (muscle-specific ubiquitin ligase muscle RING finger and atrogin-1) by modulating mRNA levels in gastrocnemius and soleus muscles. Additionally, IO and IPA upregulated mRNA levels associated with muscle growth activation (transient receptor potential vanilloid type 4 and adenosine A1 receptor) or inhibition (myostatin and sirtuin 1) in gastrocnemius and soleus muscle tissues of Dexa-induced mice. Collectively, these results suggest that IO and IO-derived IPA can regulate muscle growth through muscle protein metabolism in Dexa-induced muscle atrophy.


Assuntos
Misturas Complexas , Proteínas Musculares , Atrofia Muscular , Phaeophyceae , Animais , Benzofuranos , Misturas Complexas/farmacologia , Misturas Complexas/uso terapêutico , Dexametasona/efeitos adversos , Dioxinas , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Phaeophyceae/metabolismo , RNA Mensageiro/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328415

RESUMO

It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.


Assuntos
Lactoilglutationa Liase , Envelhecimento da Pele , Animais , Colágeno/metabolismo , Elasticidade , Elastina/metabolismo , Lactoilglutationa Liase/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209068

RESUMO

It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.


Assuntos
Ácido Ascórbico/química , Fator 2 Relacionado a NF-E2/metabolismo , Niacinamida/administração & dosagem , Polidesoxirribonucleotídeos/administração & dosagem , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Biomarcadores , Elasticidade , Expressão Gênica , Imuno-Histoquímica , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Melaninas/biossíntese , Fator 2 Relacionado a NF-E2/genética , Raios Ultravioleta
12.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056769

RESUMO

Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.


Assuntos
Linfangiogênese/efeitos da radiação , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Biomarcadores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90 , Hiperpigmentação/etiologia , Hiperpigmentação/metabolismo , Hiperpigmentação/patologia , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Melaninas/biossíntese , Modelos Biológicos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos da radiação , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885708

RESUMO

It is well known that oxidative stress induces muscle atrophy, which decreases with the activation of Nrf2/HO-1. Fermented oyster extracts (FO), rich in γ-aminobutyric acid (GABA) and lactate, have shown antioxidative effects. We evaluated whether FO decreased oxidative stress by upregulating Nrf2/HO-1 and whether it decreased NF-κB, leading to decreased IL-6 and TNF-α. Decreased oxidative stress led to the downregulation of Cbl-b ubiquitin ligase, which increased IGF-1 and decreased FoxO3, atrogin1, and Murf1, and eventually decreased muscle atrophy in dexamethasone (Dexa)-induced muscle atrophy animal model. For four weeks, mice were orally administered with FO, GABA, lactate, or GABA+Lactate, and then Dexa was subcutaneously injected for ten days. During Dexa injection period, FO, GABA, lactate, or GABA+Lactate were also administered, and grip strength test and muscle harvesting were performed on the day of the last Dexa injection. We compared the attenuation effect of FO with GABA, lactate, and GABA+lactate treatment. Nrf2 and HO-1 expressions were increased by Dexa but decreased by FO; SOD activity and glutathione levels were decreased by Dexa but increased by FO; NADPH oxidase activity was increased by Dexa but decreased by FO; NF-κB, IL-6, and TNF-α activities were increased by Dexa were decreased by FO; Cbl-b expression was increased by Dexa but restored by FO; IGF-1 expression was decreased by Dexa but increased by FO; FoxO3, Atrogin-1, and MuRF1 expressions were increased by Dexa but decreased by FO. The gastrocnemius thickness and weight were decreased by Dexa but increased by FO. The cross-sectional area of muscle fiber and grip strength were decreased by Dexa but increased by FO. In conclusion, FO decreased Dexa-induced oxidative stress through the upregulation of Nrf2/HO-1. Decreased oxidative stress led to decreased Cbl-b, FoxO3, atrogin1, and MuRF1, which attenuated muscle atrophy.


Assuntos
Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Atrofia Muscular/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Ostreidae/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Dexametasona/toxicidade , Fermentação , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Força da Mão , Fator de Crescimento Insulin-Like I/genética , Interleucina-6/genética , Ácido Láctico/farmacologia , Proteínas Musculares/genética , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/patologia , NADPH Oxidases/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/genética , Fator de Necrose Tumoral alfa/genética , Ubiquitina-Proteína Ligases/genética , Ácido gama-Aminobutírico/farmacologia
14.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639063

RESUMO

Autophagy is involved in the degradation of melanosomes and the determination of skin color. TLR4 and tumor necrosis factor (TNF) signaling upregulates NF-kB expression, which is involved in the upregulation of mTOR. The activation of mTOR by UV-B exposure results in decreased autophagy, whereas radiofrequency (RF) irradiation decreases TLR4 and TNF receptor (TNFR) expression. We evaluated whether RF decreased skin pigmentation by restoring autophagy by decreasing the expression of TLR4 or TNFR/NF-κB/mTOR in the UV-B-irradiated animal model. UV-B radiation induced the expressions of TNFR, TLR, and NF-κB in the skin, which were all decreased by RF irradiation. RF irradiation also decreased phosphorylated mTOR expression and upregulated autophagy initiation factors such as FIP200, ULK1, ULK2, ATG13, and ATG101 in the UV-B-irradiated skin. Beclin 1 expression and the expression ratio of LC3-I to LC3-II were increased by UV-B/RF irradiation. Furthermore, melanin-containing autophagosomes increased with RF irradiation. Fontana-Masson staining showed that the amount of melanin deposition in the skin was decreased by RF irradiation. This study showed that RF irradiation decreased skin pigmentation by restoring melanosomal autophagy, and that the possible signal pathways which modulate autophagy could be TLR4, TNFR, NF-κB, and mTOR.


Assuntos
Autofagia/efeitos da radiação , Melaninas/biossíntese , Melanossomas/metabolismo , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Biomarcadores , Células Cultivadas , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Imuno-Histoquímica , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Pigmentação da Pele/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
15.
Cell Transplant ; 30: 9636897211023474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34176333

RESUMO

Human adipose-derived mesenchymal stem cells (hAMSCs) are capable of immunomodulation and regeneration after neural injury. For these reasons, hAMSCs have been investigated as a promising stem cell candidate for stroke treatment. However, noninvasive experiments studying the effects of grafted stem cells in the host brain have not yet been reported. Cerebrospinal fluid (CSF), which can be collected without sacrificing the subject, is involved in physiological control of the brain and reflects the pathophysiology of various neurological disorders of the central nervous system (CNS). Following stem cell transplantation in a stroke model, quantitative analysis of CSF proteome changes can potentially reveal the therapeutic effect of stem cells on the host CNS. We examined hAMSC-secreted proteins obtained from serum-free culture medium by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which identified several extracellular matrix proteins, supporting the well-known active paracrine function of hAMSCs. Subsequently, we performed label-free quantitative proteomic analysis on CSF samples from rat stroke models intravenously injected with hAMSC (experimental) or phosphate buffered saline (control). In total, 524 proteins were identified; among them, 125 and 91 proteins were increased and decreased with hAMSC treatment, respectively. Furthermore, gene set enrichment analysis revealed three proteins, 14-3-3 theta, MAG, and neurocan, that showed significant increases in the hAMSC-treated model; these proteins are core members of neurotrophin signaling, nerve growth factor (NGF) signaling, and glycosaminoglycan metabolism, respectively. Subsequent histological and neurologic function experiments validated proliferative neurogenesis in the hAMSC-treated stroke model. We conclude that (i) intravenous injection of hAMSCs can induce neurologic recovery in a rat stroke model and (ii) CSF may reflect the therapeutic effect of hAMSCs. Additionally, proteins as 14-3-3 theta, MAG, and neurocan could be considered as potential CSF biomarkers of neuroregeneration. These CSF proteome profiling results would be utilized as valuable resource in further stroke studies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Proteoma/metabolismo , Acidente Vascular Cerebral/líquido cefalorraquidiano , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
16.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800730

RESUMO

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Assuntos
Hipertermia Induzida/métodos , Inflamação/prevenção & controle , Dor/prevenção & controle , Rosácea/complicações , Pele/patologia , Canais de Cátion TRPV/metabolismo , Terapia Ultravioleta/métodos , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Neuropeptídeos/toxicidade , Dor/etiologia , Dor/metabolismo , Dor/patologia , Pele/metabolismo , Pele/efeitos da radiação , Canais de Cátion TRPV/genética
17.
Molecules ; 26(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670841

RESUMO

Ultraviolet B (UVB) exposure activates various inflammatory molecules of keratinocytes in the epidermis layer. Such UVB-mediated skin inflammation leaves post-inflammatory hyperpigmentation (PIH). Reports show a close relationship between PIH and high-mobility group box 1 (HMGB1) and its receptors. General clinical treatments of PIH, such as oral medication and laser treatment, have reported side effects. Recent studies reported the effects of radiofrequency (RF) irradiation on restoring dermal collagen, modulating the dermal vasculature, and thickening the basement membrane. To validate how RF regulates the inflammatory molecules from UVB-irradiated keratinocytes, we used UVB-radiated keratinocytes and macrophages, as well as animal skin. In addition, we examined two cases of RF-irradiated skin inflammatory diseases. We validated the effects of RF irradiation on keratinocytes by measuring expression levels of HMGB1, Toll-like receptors (TLRs), and other inflammatory factors. The results show that the RF modulates UVB-radiated keratinocytes to secrete fewer inflammatory factors and also modulates the expression of macrophages from HMGB1, TLRs, and inflammatory factors. RF irradiation could alleviate inflammatory skin diseases in patients. RF irradiation can regulate the macrophage indirectly through modulating the keratinocyte and inflammatory molecules of macrophages reduced in vitro and in vivo. Although the study is limited by the low number of cases, it demonstrates that RF irradiation can regulate skin inflammation in patients.


Assuntos
Dermatite/radioterapia , Ativação Enzimática/efeitos da radiação , Proteína HMGB1/metabolismo , Hiperpigmentação/radioterapia , Receptores Toll-Like/metabolismo , Animais , Proliferação de Células/efeitos da radiação , Citocinas/metabolismo , Modelos Animais de Doenças , Epiderme/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Hiperpigmentação/complicações , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Raios Ultravioleta
18.
Sci Rep ; 11(1): 2012, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479312

RESUMO

Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar/terapia , Remodelação Vascular/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células/genética , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/crescimento & desenvolvimento , Artéria Pulmonar/patologia , Ratos , Função Ventricular Direita/genética
19.
Exp Dermatol ; 29(7): 659-666, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434270

RESUMO

Rosacea is a skin inflammatory condition accompanied by cutaneous signs such as oedema, flushing, erythema, telangiectasia and pustules. Generally, rosacea is triggered by ultraviolet B (UVB) exposure. When exposed to UVB, skin epidermis thickens and produces elevated levels of pro-inflammatory cytokines, especially keratinocyte-related VEGF, a potent angiogenic factor. The upregulations of VEGF expression and its secretion promote the formation of new blood vessels and exacerbates rosacea. In this study, radiofrequency (RF) irradiation reduced keratinocyte proliferation in the epidermal layer, the expressions of pro-inflammatory cytokines, angiogenesis-related inflammatory factors and VEGF in our UVB-induced model of rosacea in vitro and in vivo. RF irradiation attenuated VEGF-induced angiogenesis-associated processes such as tube formation, cell migration and endothelial cell proliferation. Notably, blood vessel densities in the skins of UVB-treated mice and rosacea patients were significantly decreased by RF irradiation. These results provide experimental and molecular evidence regarding the effectiveness of RF irradiation for the treatment of rosacea.


Assuntos
Proliferação de Células/efeitos da radiação , Neovascularização Patológica/radioterapia , Terapia por Radiofrequência , Rosácea/metabolismo , Rosácea/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/efeitos da radiação , Modelos Animais de Doenças , Células Endoteliais , Epiderme , Expressão Gênica/efeitos da radiação , Humanos , Interleucina-1beta/genética , Queratinócitos , Masculino , Camundongos , Neovascularização Patológica/metabolismo , RNA Mensageiro/metabolismo , Ondas de Rádio , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
20.
Nutrients ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739649

RESUMO

Obesity induces inflammation both in the adipose tissue and the brain. Activated macrophage infiltration, polarization of macrophages to a more inflammatory type (M1), and increased levels of pro-inflammatory cytokines are related to brain inflammation, which induces leptin resistance in the brain. Pyrogallol-phloroglucinol-6,6-bieckol (PPB), a compound from Ecklonia cava, has anti-inflammatory effects. In this study, we evaluated the effects of PPB effect M1 polarization and inflammation and its ability to restore the effects of leptin, such as a decrease in appetite and body weight. We administered PPB to diet-induced obesity (DIO) and leptin-deficient (ob/ob) mice, evaluated macrophage activation, polarization, and changes of inflammatory cytokine level in adipose tissue and brain, and determined the effect of PPB on leptin resistance or leptin sensitivity in the brain. The levels of activated macrophage marker, M1/M2, and pro-inflammatory cytokines were increased in the adipose tissue and brain of DIO and ob/ob mice than control. TLR4 expression, endoplasmic reticulum (ER) stress, and NF-κB expression in the brain of DIO and ob/ob mice were also increased; this increase was related to the upregulation of SOCS3 and decreased phosphorylated STAT3, which decreased leptin sensitivity in the brain. PPB decreased inflammation in the brain, restored leptin sensitivity, and decreased food intake and weight gain in both DIO and ob/ob mice.


Assuntos
Encéfalo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Leptina/metabolismo , Obesidade/tratamento farmacológico , Phaeophyceae/química , Floroglucinol/uso terapêutico , Pirogalol/uso terapêutico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Inflamação/etiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B , Obesidade/complicações , Obesidade/metabolismo , Floroglucinol/farmacologia , Pirogalol/farmacologia , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Receptor 4 Toll-Like , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA