Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 9926-9942, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132466

RESUMO

Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.

2.
Nutrients ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558424

RESUMO

The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.


Assuntos
Microglia , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Camundongos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Vigna/química , Extratos Vegetais/farmacologia
3.
Curr Issues Mol Biol ; 44(12): 5902-5914, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36547063

RESUMO

Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.

4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232743

RESUMO

Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.


Assuntos
Morte Celular Autofágica , Fármacos Neuroprotetores , Selaginellaceae , Animais , Autofagia , Proteína Beclina-1/farmacologia , Etanol/farmacologia , Ácido Glutâmico/toxicidade , Lactato Desidrogenases/metabolismo , Mamíferos/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selaginellaceae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Antioxidants (Basel) ; 11(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453334

RESUMO

Chronic inflammation and oxidative stress cause microglia to be abnormally activated in the brain, resulting in neurodegenerative diseases such as Alzheimer's disease (AD). Menthae Herba (MH) has been widely used as a medicinal plant with antimicrobial, anti-inflammatory, and antioxidant properties. In this study, we sought to evaluate the effects of MH on the inflammatory response and possible molecular mechanisms in microglia stimulated with lipopolysaccharide (LPS). Transcriptional and translational expression levels of the proinflammatory factors were measured using ELISA, RT-qPCR, and Western blot analysis. MH extract inhibited the production of proinflammatory enzymes and mediators nitric oxide (NO), NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6 in LPS-stimulated cells. Our molecular mechanism study showed that MH inhibited the production of reactive oxygen species (ROS) and the phosphorylation of mitogen-activated protein kinase and nuclear factor (NF)-κB. In contrast, MH activated HO-1 and its transcriptional factors, cAMP response element-binding protein (CREB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thus, MH reduces ROS and NF-κB-mediated inflammatory signaling and induces CREB/Nrf2/HO-1-related antioxidant signaling in microglia. Together, these results may provide specific prospects for the therapeutic use of MH in the context of neuroinflammatory diseases, including AD.

6.
Front Pharmacol ; 12: 764297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899320

RESUMO

OCD20015-V009 is an herbal mix of water-extracted Ginseng Radix, Poria (Hoelen), Rehmanniae Radix, Adenophorae Radix, Platycodi Radix, Crataegii Fructus, and Astragali Radix. In this study, its in vitro and in vivo antiviral activity and mechanisms against the influenza A virus were evaluated using a GFP-tagged influenza A virus (A/PR/8/34-GFP) to infect murine macrophages. We found that OCD20015-V009 pre-treatment substantially reduced A/PR/8/34-GFP replication. Also, OCD20015-V009 pre-treatment increased the phosphorylation of type-I IFN-related proteins TBK-1 and STAT1 and the secretion of pro-inflammatory cytokines TNF-α and IL-6 by murine macrophages. Moreover, OCD20015-V009 prophylactic administration increased IFN-stimulated genes-related 15, 20, and 56 and IFN-ß mRNA in vitro. Thus, OCD20015-V009 likely modulates murine innate immune response via macrophages. This finding is potentially useful for developing prophylactics or therapeutics against the influenza A virus. Furthermore, pre-treatment with OCD20015-V009 decreased the mortality of the mice exposed to A/PR/8/34-GFP by 20% compared to that in the untreated animals. Thus, OCD20015-V009 stimulates the antiviral response in murine macrophages and mice to viral infections. Additionally, we identified chlorogenic acid and ginsenoside Rd as the antiviral components in OCD20015-V009. Further investigations are needed to elucidate the protective effects of active components of OCD20015-V009 against influenza A viruses.

7.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835946

RESUMO

Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.


Assuntos
Chrysanthemum , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etanol/farmacologia , Hipocampo/citologia , Humanos , Peróxido de Hidrogênio/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Neurônios/citologia , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor trkB/metabolismo
8.
Nutrients ; 13(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445058

RESUMO

Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.


Assuntos
Anti-Inflamatórios/farmacologia , Forsythia , Frutas , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Necrose Hepática Massiva/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Forsythia/química , Frutas/química , Galactosamina , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Masculino , Necrose Hepática Massiva/induzido quimicamente , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
9.
Mediators Inflamm ; 2019: 9184769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565034

RESUMO

Hoveniae semen seu fructus (HSF, fruit and seed of Hovenia dulcis Thunb) is an important traditional herbal medicine and food supplement in East Asia for the treatment of liver diseases, alcohol poisoning, obesity, allergy, and cancer. HSF has also been reported to have anti-inflammatory activity, but the cellular mechanism of action is not fully understood. We assessed the anti-inflammatory properties of an HSF ethanol (HSFE) extract and explored its precise mechanism. The ability of HSFE to suppress inflammatory responses was investigated in a murine macrophage cell line, RAW 264.7, and mouse primary macrophages. Secretions of NO, proinflammatory cytokines, inflammatory factors, and related proteins were measured using the Griess assay, ELISA, Western blot analysis, and real-time PCR, respectively. In addition, the main components of HSFE were analyzed by HPLC, and their anti-inflammatory activity was confirmed. Our results showed that pretreatment of HSFE markedly reduced the expression of NO and iNOS without causing cytotoxicity and significantly attenuated secretion of proinflammatory cytokines, including TNF-α, IL-6, and IL-1ß. In addition, HSFE strongly suppressed phosphorylation of MAPK and decreased the activation of AP-1, JAK2/STAT, and NF-κB in LPS-stimulated RAW 264.7 cells in a concentration-dependent manner. Furthermore, HSFE strongly suppressed the inflammatory cytokine levels in mouse peritoneal macrophages. Also, as a result of HPLC analysis, three main components, ampelopsin, taxifolin, and myricetin, were identified in the HSFE extract, and each compound effectively inhibited the secretion of inflammatory mediators induced by LPS. These findings show that HSFE exerts anti-inflammatory effects by suppressing the activation of MAPK, AP-1, JAK2/STAT, and NF-κB signaling pathways in LPS-stimulated macrophages. In addition, the anti-inflammatory efficacy of HSFE appears to be closely related to the action of the three main components. Therefore, HSFE appears to be a promising candidate for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Etanol/química , Extratos Vegetais/uso terapêutico , Animais , Citocinas/sangue , Lipopolissacarídeos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , Fator de Transcrição AP-1/sangue
10.
J Ethnopharmacol ; 211: 375-383, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28917973

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dianthi Herba is a traditional herbal medicine used to treat inflammatory-related diseases including acute pyelonephritis, cystitis, laryngopharyngitis, and urethritis. AIM OF THE STUDY: We investigated the effects of Dianthi Herba ethanolic extract (DH) on lipopolysaccharide (LPS)-mediated inflammatory responses in murine macrophages including RAW 264.7 cell line and mouse peritoneal macrophages as well as nociceptive and edema mouse models. MATERIALS AND METHODS: The biological effects of DH on inflammatory cytokine, mediator, and related protein production were assessed using enzyme-linked immunosorbent assay (ELISA), Western blotting, and real-time reverse transcription-polymerase chain reaction (real-time RT-PCR). Additionally, Western blotting was performed to investigate intracellular signaling pathways, and the anti-nociceptive activity of three doses of DH (100, 200, and 300mg/kg) against acetic acid-induced writhing responses and its inhibitory effects on xylene-induced ear edema were researched in mice through oral administration. RESULTS: DH treatment significantly inhibited nitric oxide (NO) secretion and inflammatory cytokine production in RAW 264.7 cells and mouse peritoneal macrophages and induced heme oxygenase (HO)-1 expression. DH strongly inhibited the transcriptional activity of nuclear factor (NF)-κB and phosphorylation of mitogen-activated protein kinases (MAPK) in LPS-stimulated macrophages. Meanwhile, DH exerted anti-nociceptive effects on writhing responses and anti-edema effects in mice. CONCLUSION: We confirmed the anti-inflammatory activities and inhibitory mechanism of DH in macrophages and clarified its inhibitory effects in vivo. These findings illustrate the therapeutic potential of DH as a natural anti-inflammatory agent.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Dianthus , Extratos Vegetais/uso terapêutico , Ácido Acético , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Medicina Tradicional do Leste Asiático , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Dor/induzido quimicamente , Dor/tratamento farmacológico , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Células RAW 264.7 , Xilenos
11.
Am J Chin Med ; 45(7): 1477-1496, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28950712

RESUMO

Maydis Stigma (MS) is an herb traditionally used in many parts of the world. Previous studies have reported that MS plays a role in several biological activities, including antidiabetic and anticancer activities. However, the effects of a MS ethanolic extract (MSE) on the anti-inflammatory cellular mechanism remain unclear. Here, we investigated the anti-inflammatory properties of MSE and its molecular mechanism both in vitro and in vivo. The effects of MSE on the production of inflammatory mediators, cytokines, and related proteins and the identification of target genes were determined using LPS-stimulated macrophages. We also determined the analgesic and anti-inflammatory effects of MSE by examining acetic acid-induced writhing responses and xylene-induced ear edema in mice. Our results indicated that MSE markedly decreased iNOS and COX-2 levels without causing cytotoxicity and suppressed the secretion of NO in LPS-stimulated macrophages. MSE also inhibited the production of proinflammatory cytokines, such as TNF-[Formula: see text], IL-6, and IL-1[Formula: see text], and induced the expression of HO-1. Moreover, MSE treatment significantly reduced the LPS-stimulated activation of MAPK, NF-[Formula: see text]B, and AP-1. Furthermore, MSE exerted an analgesic effect on the acetic acid-induced abdominal writhing response test and an anti-inflammatory effect on xylene-induced ear edema in ICR mice. Finally, we investigated the components of MSE using UPLC-ESI-MS and found that it contains the maysin as a marker component. Overall, these observations demonstrate that MSE has anti-inflammatory and antinociceptive effects both in vitro and in vivo, which may provide new scientific evidence for its use as a potential therapeutic agent for the treatment of inflammation.


Assuntos
Analgésicos , Anti-Inflamatórios , Edema/tratamento farmacológico , Flores/química , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol , Flavonoides/análise , Flavonoides/isolamento & purificação , Glucosídeos/análise , Glucosídeos/isolamento & purificação , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo
12.
Mediators Inflamm ; 2016: 7216912, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524868

RESUMO

Rhapontici Radix (RR) has been used in traditional medicine in East Asia and has been shown to have various beneficial effects. However, its biological properties or mechanism on inflammation-related diseases is unknown. The goal of this study was to determine the anti-inflammatory activity and underlying molecular mechanisms of Rhapontici Radix ethanol extract (RRE). The inhibitory effect of RRE on the production of NO, cytokines, inflammatory-related proteins, and mRNAs in LPS-stimulated macrophages was determined by the Griess assay, ELISA, Western blot analysis, and real-time RT-PCR, respectively. Our results indicate that treatment with RRE significantly inhibited the secretion of NO and inflammatory cytokines in RAW 264.7 cells and mouse peritoneal macrophages without cytotoxicity. We also found that RRE strongly suppressed the expression of iNOS and COX-2 and induced HO-1 expression. It also prevented nuclear translocation of NF-κB by inhibiting the phosphorylation and degradation of IκBα. Furthermore, the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 cells was significantly inhibited by RRE. These findings suggest that RRE may operate as an effective anti-inflammatory agent by inhibiting the activation of NF-κB and MAPK signaling pathways and inducing HO-1 expression in macrophages. Our results suggest that RRE has potential value as candidate to inflammatory therapeutic phytomedicine.


Assuntos
Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leuzea/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Etanol/química , Heme Oxigenase-1/genética , Inflamação/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/genética , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
13.
Molecules ; 21(6)2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338335

RESUMO

Melandrii Herba (MH) is a traditional Asian medicinal herb used to treat breast cancer, anuria, and diseases of lactation. However, its biological properties and molecular mechanisms have not been fully elucidated. The purpose of this study was to investigate the anti-inflammatory activity and underlying molecular mechanism of MH ethanol extract (MHE) on the lipopolysaccharide (LPS)-mediated inflammatory response in macrophages. MHE cytotoxicity was determined using a cell counting kit (CCK) assay. The effects of MHE on the production of NO, inflammatory cytokines, and related proteins and mRNAs were determined using the Griess test, ELISA, Western blotting, and real-time RT-PCR, respectively. In addition, intracellular signaling pathways, such as NF-κB, MAPK, and HO-1, were analyzed using Western blotting. Our results revealed that MHE treatment significantly inhibited the secretion of NO and inflammatory cytokines, including TNF-α, IL-6, and IL-1ß in macrophages, at sub-cytotoxic concentrations. Furthermore, MHE treatment inhibited iNOS expression and induced HO-1 expression. Finally, the transcriptional activities of NF-κB and MAPK activation were significantly suppressed by MHE in LPS-stimulated macrophages. The results indicate that MHE exerts anti-inflammatory effects by suppressing inflammatory mediator production via NF-κB and MAPK signaling pathways inhibition and induction of HO-1 expression in macrophages. Therefore, our results suggest the potential value of MHE as an inflammatory therapeutic agent developed from a natural substance.


Assuntos
Heme Oxigenase-1/biossíntese , Inflamação/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Plantas Medicinais/química , Fator de Transcrição RelA/biossíntese , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Interleucina-6/biossíntese , Lipopolissacarídeos/toxicidade , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese
14.
BMC Complement Altern Med ; 16: 180, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301877

RESUMO

BACKGROUND: Viola yedoensis (VY, Violaceae) is a popular medicinal herb used in traditional eastern medicine for treating lots of diseases, including inflammation and its related symptoms. However, the anti-inflammatory properties of VY have not been demonstrated. In the present study, we investigated the anti-inflammatory effects of VY ethanol extract (VYE) on macrophages and attempted to identify the bioactive components of VYE. METHODS: We assessed the effects of VYE on secretion of nitric oxide (NO) and inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. In addition, we explored the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and changes in heme oxygenase (HO)-1, nuclear factor (NF)-kB, and mitogen-activated protein kinase (MAPK) signaling pathways in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). In addition, a rapid and useful approach to identify potential bioactive components in VYE with anti-inflammatory effects was developed using murine macrophage cell extraction coupled with high-performance liquid chromatography tandem mass spectrometry (LC-MS). RESULTS: We found that VYE exerted anti-inflammatory activity by inhibiting the production of key inflammation mediators and related products, as well as suppression of HO-1, NF-kB, and MAPK signaling pathway activation in RAW 264.7 cells. In addition, we identified two compounds in VYE via the cell extraction method. CONCLUSIONS: Our results revealed that VYE exerts anti-inflammatory activities and its detailed inhibitory mechanism in macrophages. Furthermore, we identified bioactive components of VYE.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Viola/química , Animais , Anti-Inflamatórios/química , Sobrevivência Celular , Citocinas/análise , Citocinas/metabolismo , Heme Oxigenase-1/análise , Heme Oxigenase-1/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/análise , NF-kappa B/metabolismo , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7
15.
Am J Chin Med ; 43(5): 953-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26224028

RESUMO

Epimedium Herb (EH) is a medicinal herb used in traditional Eastern Asia. In this study described, we investigated the biological effects of Epimedium Herb water extract (EHWE) on lipopolysaccharide (LPS)-mediated inflammation in macrophages and local inflammation in vivo. We also investigated the biological effects of EHWE on the production of inflammatory mediators, pro-inflammatory cytokines and related products, as well as nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation in LPS-stimulated macrophages. The analgesic effect of the acetic acid-induced writhing response and inhibitory activity on xylene-induced ear edema was also evaluated in mice. EHWE exhibited anti-inflammatory effects by inhibiting the production of nitric oxide (NO), interleukin (IL)-6 and IL-1ß. In addition, EHWE strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression, and inhibited NF-κB activation as well as MAPK pathway phosphorylation. Furthermore, EHWE exhibited an analgesic effect on the writhing response and an inhibitory effect on ear edema in mice. For the first time, we demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages, as well as the inhibitory activity of EHWE in vivo. Our results indicate a potential use of EHWE as an inflammatory therapeutic agent developed from a natural substance.


Assuntos
Analgésicos , Anti-Inflamatórios , Citocinas/metabolismo , Epimedium/química , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
16.
Int J Mol Sci ; 16(1): 1232-51, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25569097

RESUMO

Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1ß cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Ácido Acético/toxicidade , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Xilenos/toxicidade
17.
Pharmacogn Mag ; 10(Suppl 3): S588-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25298679

RESUMO

BACKGROUND: Artemisiae annuae herba (AAH) has been traditionally used as a drug for the treatment of malaria, heat stroke, bacterial infection, and fever in East-Asia. Although AAH has been used for the treatment of inflammation-related symptoms, the underlying mechanism of antiinflammatory activity of AAH is still unknown. OBJECTIVE: We investigated whether AAH have an inhibitory effect on the production of pro-inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. MATERIALS AND METHODS: The investigation was forced on the inhibitory effect of AAH on the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, nitric oxide (NO), and inducible NO synthase (iNOS) in macrophages. Furthermore, we examined the effect of AAH on the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. RESULTS: We found that AAH suppresses NO production and TNF-α, IL-6, and iNOS gene expression. Moreover, AAH inhibited the nuclear translocation of p65 and IκBα degradation in NF-κB pathway and decreased the extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase phosphorylation in MAPK signaling pathway. CONCLUSIONS: Consequently, these results indicate that AAH contains antiinflammatory activity and this effect is derived from the repression on the activation of NF-κB and MAPKs pathways. We first demonstrated that antiinflammatory effect of AAH and its underlying mechanism in macrophage cells.

18.
Pharmacogn Mag ; 10(Suppl 3): S645-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25298686

RESUMO

BACKGROUND: Hwangryunhaedoktang (HR) has been traditionally used in oriental medicine as a drug for the treatment of melena, hemoptysis, and apoplexy. OBJECTIVE: We investigated whether HR and lactobacilli-fermented HRs have an inhibitory effect on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. MATERIALS AND METHODS: The investigation was focused on whether HR and fermented HRs could inhibit the production of prostaglandin (PG)E2, nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. RESULTS: We found that HR weakly inhibited various inflammatory mediators induced by LPS. However, fermentation with lactobacilli significantly increased the inhibitory effect of HR on most of the inflammatory mediator expression. Furthermore, fermented HRs exerted a stronger inhibitory effect on MAPKs phosphorylation than that by non-fermented HR. CONCLUSIONS: These results suggest that lactobacilli-fermented HRs contains elevated potent anti-inflammatory activity that is mediated by inhibiting MAPKs pathway in macrophages.

19.
BMC Complement Altern Med ; 14: 242, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25023125

RESUMO

BACKGROUND: Oryeongsan (OR) is an herbal medication used in east-Asian traditional medicine to treat dysuresia, such as urinary frequency, hematuria, and dysuria due to renal disease and chronic nephritis. Recent studies showed that protective effect against acute gastric mucosal injury and an inhibitory effect on the renin-angiotensin-aldosterone pathway of OR. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OR, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 macrophage cells. METHODS: We investigated the pharmacological and biological effects of OR on the production of pro-inflammatory cytokines, inflammatory mediators, and related products through Enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Also, we examined the activation and suppression of nuclear factor (NF)-kappaB and mitogen-activated protein kinases (MAPKs) pathways in LPS-stimulated macrophages via Western blot analysis in order to explore inhibitory mechanism of OR. RESULTS: OR had anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1 beta. In addition, it strongly suppressed cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), NO synthesizing enzymes. It also induced heme oxygenase (HO)-1 expression and inhibited NF-kappaB signaling pathway activation and phosphorylation of MAPKs. CONCLUSIONS: We further demonstrate the anti-inflammatory effects and inhibitory mechanism of OR in LPS-stimulated macrophages for the first time. OR contains strong anti-inflammatory activity and affects various mechanism pathways including NF-kappaB, MAPKs and HO-1. Our results suggest that OR has potential value to be developed as an inflammatory therapeutic agent from a natural substance.


Assuntos
Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/biossíntese , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Indução Enzimática/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos
20.
Int J Mol Sci ; 15(5): 8443-57, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24828204

RESUMO

Palmultang (PM) is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO), inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and by inducing heme oxygenase (HO)-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS).


Assuntos
Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA