Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 275: 120967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153786

RESUMO

Although osteoarthritis (OA) is the most prevalent degenerative joint disease, there is no effective disease-modifying therapy. We report an empty self-assembled hyaluronic acid nanoparticle (HA-NP) as a potential therapeutic agent for OA treatment. In mouse primary articular chondrocytes, HA-NPs blocked the receptor-mediated cellular uptake of free low-molecular-weight HA, and the cellular uptake of HA-NPs increased by ectopic expression of CD44, using an adenoviral delivery system (Ad-Cd44). HA-NP showed in vitro resistance to digestion with hyaluronidase and in vivo long-term retention ability in knee joint, compared with free high-molecular-weight (HMW) HA. CD44 expression increased in the damaged articular cartilage of patients and mice with OA. Ad-Cd44 infection and IL-1ß treatment induced in vitro phenotypes of OA by enhancing catabolic gene expression in primary articular chondrocytes, and these effects were attenuated by HA-NP, but not HMW HA. Both Cd44 deficiency and intra-articular injection of HA-NP protected joint cartilage against OA development in the OA mouse model. NF-κB was found to mediate CD44-induced catabolic factor expression and HA-NP inhibited CD44-induced NF-κB activation in chondrocytes. Our results identify an empty HA-NP as a potential therapeutic agent targeting CD44 for OA treatment, and the CD44-NF-κB-catabolic gene axis as an underlying mechanism of destructive cartilage disorders.


Assuntos
Cartilagem Articular , Nanopartículas , Osteoartrite , Animais , Condrócitos , Humanos , Ácido Hialurônico , Camundongos , Osteoartrite/tratamento farmacológico
2.
Exp Mol Med ; 51(7): 1-14, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358736

RESUMO

During ligand-mediated receptor endocytosis, the small GTPase Rab5 functions in vesicle fusion and trafficking. Rab5 activation is known to require interactions with its guanine nucleotide-exchange factors (GEFs); however, the mechanism regulating Rab5 interactions with GEFs remains unclear. Here, we show that the SH3-adapter protein SPIN90 participates in the activation of Rab5 through the recruitment of both Rab5 and its GEF, Gapex5, to endosomal membranes during epidermal growth factor (EGF)-mediated endocytosis. SPIN90 strongly interacts with the inactive Rab5/GDI2 complex through its C-terminus. In response to EGF signaling, extracellular signal-regulated kinase (ERK)-mediated phosphorylation of SPIN90 at Thr-242 enables SPIN90 to bind Gapex5 through its N-terminal SH3 domain. Gapex5 is a determinant of Rab5 membrane targeting, while SPIN90 mediates the interaction between Gapex5 and Rab5 in a phosphorylation-dependent manner. Collectively, our findings suggest that SPIN90, as an adaptor protein, simultaneously binds inactive Rab5 and Gapex5, thereby altering their spatial proximity and facilitating Rab5 activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Musculares/metabolismo , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Endocitose/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Musculares/genética , Fosforilação , Ligação Proteica , Proteínas rab5 de Ligação ao GTP/genética , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA