Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 892, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039245

RESUMO

Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Homeostase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Knockout , Osteoblastos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Osteoblastos/metabolismo , Feminino , Osso e Ossos/metabolismo , Diferenciação Celular , Osteoclastos/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Osteoporose/genética , Osteoporose/metabolismo
2.
Mol Cells ; 46(6): 387-398, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36794420

RESUMO

Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.


Assuntos
Fator de Transcrição AP-1 , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acetilação , Morte Celular , Microtúbulos/metabolismo
3.
Brain Res ; 1788: 147924, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469845

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia. Amyloid-ß (Aß) has long been considered a key cause of neurodegeneration in the AD brain. Although the mechanisms underlying Aß-induced neurodegeneration are not fully understood, a number of recent studies have suggested that intracellular calcium overload mediates this process. In this study, we focused on the cellular function of phospholipase C-ß1 (PLCB1), which regulates calcium signaling by mediating hydrolysis of phosphatidylinositol 4,5-bisphosphate through G-protein coupled receptor pathways. First, we confirmed that acetylcholine-induced calcium release from intracellular stores of SH-SY5Y cells was significantly increased with Aß42 oligomer treatment. We further found that PLCB1 expression was upregulated in Aß42-treated cells, and PLCB1 overexpression in SH-SY5Y cells elicited the calcium overload observed in Aß-treated cells. In addition, Aß42 oligomer-induced calcium overload in SH-SY5Y cells was alleviated by knockdown of PLCB1, indicating that PLCB1 plays an essential role in the neurotoxic process initiated by Aß. The elevation of PLCB1 expression was confirmed in the brain tissues from the 5× familial AD (5×FAD) model mice. These findings suggest that PLCB1 may represent a potential therapeutic target for protecting neuronal cells against excitotoxicity in AD progression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cálcio , Neuroblastoma , Fosfolipase C beta , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfolipase C beta/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA