Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(6): e1011139, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289655

RESUMO

Immunosenescence refers to the development of weakened and/or dysfunctional immune responses associated with aging. Several commensal bacteria can be pathogenic in immunosuppressed individuals. Although Klebsiella pneumoniae is a commensal bacterium that colonizes human mucosal surfaces, the gastrointestinal tract, and the oropharynx, it can cause serious infectious diseases, such as pneumonia, urinary tract infections, and liver abscesses, primarily in elderly patients. However, the reason why K. pneumoniae is a more prevalent cause of infection in the elderly population remains unclear. This study aimed to determine how the host's intestinal immune response to K. pneumoniae varies with age. To this end, the study analyzed an in vivo K. pneumoniae infection model using aged mice, as well as an in vitro K. pneumoniae infection model using a Transwell insert co-culture system comprising epithelial cells and macrophages. In this study, we demonstrate that growth arrest-specific 6 (Gas6), released by intestinal macrophages that recognize K. pneumoniae, inhibits bacterial translocation from the gastrointestinal tract by enhancing tight-junction barriers in the intestinal epithelium. However, in aging mice, Gas6 was hardly secreted under K. pneumoniae infection due to decreasing intestinal mucosal macrophages; therefore, K. pneumoniae can easily invade the intestinal epithelium and subsequently translocate to the liver. Moreover, the administration of Gas6 recombinant protein to elderly mice prevented the translocation of K. pneumoniae from the gastrointestinal tract and significantly prolonged their survival. From these findings, we conclude that the age-related decrease in Gas6 secretion in the intestinal mucosa is the reason why K. pneumoniae can be pathogenic in the elderly, thereby indicating that Gas6 could be effective in protecting the elderly against infectious diseases caused by gut pathogens.


Assuntos
Doenças Transmissíveis , Imunossenescência , Infecções por Klebsiella , Idoso , Animais , Humanos , Camundongos , Doenças Transmissíveis/metabolismo , Mucosa Intestinal/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Fígado/patologia
2.
Int Immunol ; 34(5): 277-289, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35094065

RESUMO

Effective tumor immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute a specialized microenvironment that excludes T cells from the vicinity of cancer cells, and its underlying mechanisms are still poorly understood. DOCK2 is a Rac activator critical for migration and activation of lymphocytes. We herein show that cancer-derived cholesterol sulfate (CS), a lipid product of the sulfotransferase SULT2B1b, acts as a DOCK2 inhibitor and prevents tumor infiltration by effector T cells. Using clinical samples, we found that CS was abundantly produced in certain types of human cancers such as colon cancers. Functionally, CS-producing cancer cells exhibited resistance to cancer-specific T-cell transfer and immune checkpoint blockade. Although SULT2B1b is known to sulfate oxysterols and inactivate their tumor-promoting activity, the expression levels of cholesterol hydroxylases, which mediate oxysterol production, are low in SULT2B1b-expressing cancers. Therefore, SULT2B1b inhibition could be a therapeutic strategy to disrupt tumor immune evasion in oxysterol-non-producing cancers. Thus, our findings define a previously unknown mechanism for tumor immune evasion and provide a novel insight into the development of effective immunotherapies.


Assuntos
Neoplasias , Oxisteróis , Ésteres do Colesterol/metabolismo , Humanos , Imunoterapia , Linfócitos T/metabolismo , Microambiente Tumoral
3.
J Immunol ; 201(8): 2264-2272, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209188

RESUMO

Bmi1 is a polycomb group protein and regulator that stabilizes the ubiquitination complex PRC1 in the nucleus with no evidently direct link to the NF-κB pathway. In this study, we report a novel function of Bmi1: its regulation of IκBα ubiquitination in the cytoplasm. A deficiency of Bmi1 inhibited NF-κB-mediated gene expression in vitro and a NF-κB-mediated mouse model of arthritis in vivo. Mechanistic analysis showed that Bmi1 associated with the SCF ubiquitination complex via its N terminus and with phosphorylation by an IKKα/ß-dependent pathway, leading to the ubiquitination of IκBα. These effects on NF-κB-related inflammation suggest Bmi1 in the SCF complex is a potential therapeutic target for various diseases and disorders, including autoimmune diseases.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Citoplasma/metabolismo , Células Endoteliais/fisiologia , Complexos Multiproteicos/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , NF-kappa B/metabolismo , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Proteínas Ligases SKP Culina F-Box/genética , Ativação Transcricional , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA