Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(10): e13600, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21049041

RESUMO

The canonical Wnt/ß-catenin pathway plays crucial roles in various aspects of lung morphogenesis and regeneration/repair. Here, we examined the lung phenotype and function in mice lacking the Wnt/ß-catenin antagonist Chibby (Cby). In support of its inhibitory role in canonical Wnt signaling, expression of ß-catenin target genes is elevated in the Cby(-/-) lung. Notably, Cby protein is prominently associated with the centrosome/basal body microtubule structures in embryonic lung epithelial progenitor cells, and later enriches as discrete foci at the base of motile cilia in airway ciliated cells. At birth, Cby(-/-) lungs are grossly normal but spontaneously develop alveolar airspace enlargement with reduced proliferation and abnormal differentiation of lung epithelial cells, resulting in altered pulmonary function. Consistent with the Cby expression pattern, airway ciliated cells exhibit a marked paucity of motile cilia with apparent failure of basal body docking. Moreover, we demonstrate that Cby is a direct downstream target for the master ciliogenesis transcription factor Foxj1. Collectively, our results demonstrate that Cby facilitates proper postnatal lung development and function.


Assuntos
Proteínas de Transporte/fisiologia , Diferenciação Celular , Células Epiteliais/citologia , Pulmão/crescimento & desenvolvimento , Proteínas Nucleares/fisiologia , Animais , Western Blotting , Proteínas de Transporte/genética , Camundongos , Camundongos Endogâmicos BALB C , Morfogênese , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Proc Natl Acad Sci U S A ; 104(30): 12506-11, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17640880

RESUMO

In a previous study, we found that human neural stem cells (HNSCs) exposed to high concentrations of secreted amyloid-precursor protein (sAPP) in vitro differentiated into mainly astrocytes, suggesting that pathological alterations in APP processing during neurodegenerative conditions such as Alzheimer's disease (AD) may prevent neuronal differentiation of HNSCs. Thus, successful neuroplacement therapy for AD may require regulating APP expression to favorable levels to enhance neuronal differentiation of HNSCs. Phenserine, a recently developed cholinesterase inhibitor (ChEI), has been reported to reduce APP levels in vitro and in vivo. In this study, we found reductions of APP and glial fibrillary acidic protein (GFAP) levels in the hippocampus of APP23 mice after 14 days treatment with (+)-phenserine (25 mg/kg) lacking ChEI activity. No significant change in APP gene expression was detected, suggesting that (+)-phenserine decreases APP levels and reactive astrocytes by posttranscription regulation. HNSCs transplanted into (+)-phenserine-treated APP23 mice followed by an additional 7 days of treatment with (+)-phenserine migrated and differentiated into neurons in the hippocampus and cortex after 6 weeks. Moreover, (+)-phenserine significantly increased neuronal differentiation of implanted HNSCs in hippocampal and cortical regions of APP23 mice and in the CA1 region of control mice. These results indicate that (+)-phenserine reduces APP protein in vivo and increases neuronal differentiation of HNSCs. Combination use of HNSC transplantation and treatment with drugs such as (+)-phenserine that modulate APP levels in the brain may be a useful tool for understanding mechanisms regulating stem cell migration and differentiation during neurodegenerative conditions in AD.


Assuntos
Doença de Alzheimer/patologia , Amiloide/metabolismo , Diferenciação Celular/efeitos dos fármacos , Neurônios/citologia , Fisostigmina/análogos & derivados , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Amiloide/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Fisostigmina/farmacologia , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA