Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903011

RESUMO

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Músculo Esquelético , Dobramento de Proteína , Resposta a Proteínas não Dobradas , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Apoptose , Camundongos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Especificidade de Órgãos , Proteína Forkhead Box O1/metabolismo , Técnicas de Introdução de Genes , Proteína 1 de Ligação a X-Box/metabolismo , Agregados Proteicos , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
JBMR Plus ; 8(4): ziae018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544920

RESUMO

Achondroplasia (ACH) is a skeletal dysplasia characterized by short-limbed short stature caused by the gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Activated FGFR3, which is a negative regulator of bone elongation, impairs the growth of long bones and the spinal arch by inhibiting chondrocyte proliferation and differentiation. Most patients with ACH have spinal canal stenosis in addition to short stature. Meclozine has been found to inhibit FGFR3 via drug repurposing. A 10-d treatment with meclozine promoted long-bone growth in a mouse model of ACH (Fgfr3ach mice). This study aimed to evaluate the effects of long-term meclozine administration on promoting bone growth and the spinal canal in Fgfr3ach mice. Meclozine (2 mg/kg/d) was orally administered to Fgfr3ach mice for 5 d per wk from the age of 7 d to 56 d. Meclozine (2 mg/kg/d) significantly reduced the rate of death or paralysis and improved the length of the body, cranium, and long bones in male and female Fgfr3ach mice. Micro-computed tomography analysis revealed that meclozine ameliorated kyphotic deformities and trabecular parameters, including BMD, bone volume/tissue volume, trabecular thickness, and trabecular number at distal femur of Fgfr3ach mice in both sexes. Histological analyses revealed that the hypertrophic zone in the growth plate was restored in Fgfr3ach mice following meclozine treatment, suggesting upregulation of endochondral ossification. Skeletal preparations demonstrated that meclozine restored the spinal canal diameter in Fgfr3ach mice in addition to improving the length of each bone. The 2 mg/kg/d dose of meclozine reduced the rate of spinal paralysis caused by spinal canal stenosis, maintained the growth plate structure, and recovered the bone quality and growth of axial and appendicular skeletons of Fgfr3ach mice in both sexes. Long-term meclozine administration has the potential to ameliorate spinal paralysis and bone growth in patients with ACH.

3.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424183

RESUMO

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Assuntos
Haplótipos , Proteoglicanas de Heparan Sulfato , Osteocondrodisplasias , Feminino , Humanos , Masculino , Alelos , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Efeito Fundador , Proteoglicanas de Heparan Sulfato/genética , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Doenças Fetais
4.
Brain Nerve ; 76(1): 41-45, 2024 Jan.
Artigo em Japonês | MEDLINE | ID: mdl-38191138

RESUMO

Congenital myasthenic syndromes (CMS) are characterized by congenital defects in the neuromuscular signal transmission and are caused by pathogenic variants in 36 genes. Recently identified forms of CMS include TOR1AIP1-CMS, CHD8-CMS, PURA-CMS, and TEFM-CMS. Most forms of CMS are caused by autosomal recessive variants, whereas four forms of CMS are caused by autosomal dominant variants, in which adult-onset cases are not rare. As myasthenic features are not always observed and muscle hypotrophy is sometimes observed, CMS should be considered in differential diagnosis of congenital myopathies and other neuromuscular diseases. Low- and high-frequency repetitive nerve stimulation is essential to diagnose CMS for patients who develop muscle weakness at less than 2 years of age. Tubular aggregates are observed in muscle biopsy in four forms of CMS, and serum CK levels are elevated in some forms of CMS. As rational therapies are available for most forms of CMS, identification of causative gene variants by genetic analysis is required.


Assuntos
Síndromes Miastênicas Congênitas , Adulto , Humanos , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Biópsia , Diagnóstico Diferencial , Debilidade Muscular , Atrofia Muscular
5.
Sci Rep ; 13(1): 16997, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813949

RESUMO

Chronic subdural hematoma (CSDH) often causes neurological deterioration and is treated with hematoma evacuation. This study aimed to assess the feasibility of various machine learning models to preoperatively predict the functional outcome of patients with CSDH. Data were retrospectively collected from patients who underwent CSDH surgery at two institutions: one for internal validation and the other for external validation. The poor functional outcome was defined as a modified Rankin scale score of 3-6 upon hospital discharge. The unfavorable outcome was predicted using four machine learning algorithms on an internal held-out cohort (n = 188): logistic regression, support vector machine (SVM), random forest, and light gradient boosting machine. The prediction performance of these models was also validated in an external cohort (n = 99). The area under the curve of the receiver operating characteristic curve (ROC-AUC) of each machine learning-based model was found to be high in both validations (internal: 0.906-0.925, external: 0.833-0.860). In external validation, the SVM model demonstrated the highest ROC-AUC of 0.860 and accuracy of 0.919. This study revealed the potential of machine learning algorithms in predicting unfavorable outcomes at discharge among patients with CSDH undergoing burr hole surgery.


Assuntos
Hematoma Subdural Crônico , Humanos , Estudos Retrospectivos , Hematoma Subdural Crônico/cirurgia , Trepanação , Aprendizado de Máquina , Modelos Logísticos
6.
Genes (Basel) ; 14(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761905

RESUMO

Single nucleotide variants (SNVs) affecting the first nucleotide G of an exon (Fex-SNVs) identified in various diseases are mostly recognized as missense or nonsense variants. Their effect on pre-mRNA splicing has been seldom analyzed, and no curated database is available. We previously reported that Fex-SNVs affect splicing when the length of the polypyrimidine tract is short or degenerate. However, we cannot readily predict the splicing effects of Fex-SNVs. We here scrutinized the available literature and identified 106 splicing-affecting Fex-SNVs based on experimental evidence. We similarly identified 106 neutral Fex-SNVs in the dbSNP database with a global minor allele frequency (MAF) of more than 0.01 and less than 0.50. We extracted 115 features representing the strength of splicing cis-elements and developed machine-learning models with support vector machine, random forest, and gradient boosting to discriminate splicing-affecting and neutral Fex-SNVs. Gradient boosting-based LightGBM outperformed the other two models, and the length and nucleotide compositions of the polypyrimidine tract played critical roles in the discrimination. Recursive feature elimination showed that the LightGBM model using 15 features achieved the best performance with an accuracy of 0.80 ± 0.12 (mean and SD), a Matthews Correlation Coefficient (MCC) of 0.57 ± 0.15, an area under the curve of the receiver operating characteristics curve (AUROC) of 0.86 ± 0.08, and an area under the curve of the precision-recall curve (AUPRC) of 0.87 ± 0.09 using a 10-fold cross-validation. We developed a web service program, named FexSplice that accepts a genomic coordinate either on GRCh37/hg19 or GRCh38/hg38 and returns a predicted probability of aberrant splicing of A, C, and T variants.


Assuntos
Nucleotídeos , Splicing de RNA , Éxons/genética , Bases de Dados Factuais , Frequência do Gene , Nucleotídeos/genética
7.
Ecotoxicol Environ Saf ; 264: 115482, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717354

RESUMO

The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.


Assuntos
Campos Eletromagnéticos , Proteínas de Choque Térmico , Humanos , Acetilação , Campos Eletromagnéticos/efeitos adversos , Células HEK293 , Dobramento de Proteína , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Trifosfato de Adenosina
8.
Sci Transl Med ; 15(700): eadd1531, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315109

RESUMO

Retrograde menstruation is a widely accepted cause of endometriosis. However, not all women who experience retrograde menstruation develop endometriosis, and the mechanisms underlying these observations are not yet understood. Here, we demonstrated a pathogenic role of Fusobacterium in the formation of ovarian endometriosis. In a cohort of women, 64% of patients with endometriosis but <10% of controls were found to have Fusobacterium infiltration in the endometrium. Immunohistochemical and biochemical analyses revealed that activated transforming growth factor-ß (TGF-ß) signaling resulting from Fusobacterium infection of endometrial cells led to the transition from quiescent fibroblasts to transgelin (TAGLN)-positive myofibroblasts, which gained the ability to proliferate, adhere, and migrate in vitro. Fusobacterium inoculation in a syngeneic mouse model of endometriosis resulted in a marked increase in TAGLN-positive myofibroblasts and increased number and weight of endometriotic lesions. Furthermore, antibiotic treatment largely prevented establishment of endometriosis and reduced the number and weight of established endometriotic lesions in the mouse model. Our data support a mechanism for the pathogenesis of endometriosis via Fusobacterium infection and suggest that eradication of this bacterium could be an approach to treat endometriosis.


Assuntos
Endometriose , Infecções por Fusobacterium , Feminino , Animais , Camundongos , Humanos , Fibroblastos , Miofibroblastos , Modelos Animais de Doenças , Endométrio
9.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108583

RESUMO

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Assuntos
Neuroblastoma , RNA , Humanos , RNA/metabolismo , Agrina/genética , Agrina/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo
10.
BMC Musculoskelet Disord ; 24(1): 200, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927417

RESUMO

BACKGROUND: Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). METHODS: The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). RESULTS: BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. CONCLUSION: Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.


Assuntos
Osteogênese , Osteoporose Pós-Menopausa , Animais , Feminino , Humanos , Camundongos , Densidade Óssea , Regeneração Óssea , Calcificação Fisiológica , Modelos Animais de Doenças , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/patologia , Ovariectomia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Microtomografia por Raio-X
11.
Pituitary ; 26(2): 237-249, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995457

RESUMO

PURPOSE: Delayed hyponatremia (DHN), a unique complication, is the leading cause of unexpected readmission after pituitary surgery. Therefore, this study aimed to develop tools for predicting postoperative DHN in patients undergoing endoscopic transsphenoidal surgery (eTSS) for pituitary neuroendocrine tumors (PitNETs). METHODS: This was a single-center, retrospective study involving 193 patients with PitNETs who underwent eTSS. The objective variable was DHN, defined as serum sodium levels < 135 mmol/L at ≥ 1 time between post operative days 3 and 9. We trained four machine learning models to predict this objective variable using the clinical variables available preoperatively and on the first postoperative day. The clinical variables included patient characteristics, pituitary-related hormone levels, blood test results, radiological findings, and postoperative complications. RESULTS: The random forest (RF) model demonstrated the highest (0.759 ± 0.039) area under the curve of the receiver operating characteristic curve (ROC-AUC), followed by the support vector machine (0.747 ± 0.034), the light gradient boosting machine (LGBM: 0.738 ± 0.026), and the logistic regression (0.710 ± 0.028). The highest accuracy (0.746 ± 0.029) was observed in the LGBM model. The best-performing RF model was based on 24 features, nine of which were clinically available preoperatively. CONCLUSIONS: The proposed machine learning models with pre- and post-resection features predicted DHN after the resection of PitNETs.


Assuntos
Adenoma , Hiponatremia , Neoplasias Hipofisárias , Humanos , Hiponatremia/etiologia , Estudos Retrospectivos , Adenoma/cirurgia , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/complicações , Aprendizado de Máquina
12.
Sci Rep ; 12(1): 11918, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831372

RESUMO

Anticancer drugs and molecular targeted therapies are used for refractory desmoid-type fibromatosis (DF), but occasionally cause severe side effects. The purpose of this study was to identify an effective drug with fewer side effects against DF by drug repositioning, and evaluate its efficacy. FDA-approved drugs that inhibit the proliferation of DF cells harboring S45F mutations of CTNNB1 were screened. An identified drug was subjected to the investigation of apoptotic effects on DF cells with analysis of Caspase 3/7 activity. Expression of ß-catenin was evaluated with western blot analysis, and immunofluorescence staining. Effects of the identified drug on in vivo DF were analyzed using Apc1638N mice. Auranofin was identified as a drug that effectively inhibits the proliferation of DF cells. Auranofin did not affect Caspase 3/7 activity compared to control. The expression level of ß-catenin protein was not changed regardless of auranofin concentration. Auranofin effectively inhibited the development of tumorous tissues by both oral and intraperitoneal administration, particularly in male mice. Auranofin, an anti-rheumatic drug, was identified to have repositioning effects on DF. Since auranofin has been used for many years as an FDA-approved drug, it could be a promising drug with fewer side effects for DF.


Assuntos
Fibromatose Agressiva , beta Catenina , Animais , Auranofina/farmacologia , Auranofina/uso terapêutico , Caspase 3/genética , Fibromatose Agressiva/tratamento farmacológico , Fibromatose Agressiva/genética , Masculino , Camundongos , Mutação , beta Catenina/genética
13.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456905

RESUMO

KIAA1199 has a strong hyaluronidase activity in inflammatory arthritis. This study aimed to identify a drug that could reduce KIAA1199 activity and clarify its effects on inflammatory arthritis. Rat chondrosarcoma (RCS) cells were strongly stained with Alcian blue (AB). Its stainability was reduced in RCS cells, which were over-expressed with the KIAA1199 gene (RCS-KIAA). We screened the drugs that restore the AB stainability in RCS-KIAA. The effects of the drug were evaluated by particle exclusion assay, HA ELISA, RT-PCR, and Western blotting. We further evaluated the HA accumulation and the MMP1 and three expressions in fibroblast-like synoviocytes (FLS). In vivo, the effects of the drug on symptoms and serum concentration of HA in a collagen-induced arthritis mouse were evaluated. Ipriflavone was identified to restore AB stainability at 23%. Extracellular matrix formation was significantly increased in a dose-dependent manner (p = 0.006). Ipriflavone increased the HA accumulation and suppressed the MMP1 and MMP3 expression on TNF-α stimulated FLS. In vivo, Ipriflavone significantly improved the symptoms and reduced the serum concentrations of HA. Conclusions: We identified Ipriflavone, which has inhibitory effects on KIAA1199 activity. Ipriflavone may be a therapeutic candidate based on its reduction of KIAA1199 activity in inflammatory arthritis.


Assuntos
Artrite Experimental , Sinoviócitos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Reposicionamento de Medicamentos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Isoflavonas , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Ratos , Sinoviócitos/metabolismo
14.
Am J Sports Med ; 50(5): 1317-1327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234523

RESUMO

BACKGROUND: Wnt/ß-catenin signaling suppresses the differentiation of cultured tenocytes, but its roles in tendon repair remain mostly elusive. No chemical compounds are currently available to treat tendon injury. HYPOTHESIS: We hypothesized that the inhibition of Wnt/ß-catenin signaling would accelerate tendon healing. STUDY DESIGN: Controlled laboratory study. METHODS: Tendon-derived cells (TDCs) were isolated from rat Achilles tendons. The right Achilles tendon was injured via a dermal punch, while the left tendon was sham operated. A Wnt/ß-catenin inhibitor, IWR-1, and an antihistamine agent, promethazine (PH), were locally and intramuscularly injected, respectively, for 2 weeks after surgery. The healing tendons were histologically and biomechanically evaluated. RESULTS: The amount of ß-catenin protein was increased in the injured tendons from postoperative weeks 0.5 to 2. Inhibition of Wnt/ß-catenin signaling by IWR-1 in healing tendons improved the histological abnormalities and decreased ß-catenin, but it compromised the biomechanical properties. As we previously reported that antihistamine agents suppressed Wnt/ß-catenin signaling in human chondrosarcoma cells, we examined the effects of antihistamines on TDCs. We found that a first-generation antihistamine agent, PH, increased the expression of the tendon marker genes Mkx and Tnmd in TDCs. Intramuscular injection of PH did not improve histological abnormalities, but it decreased ß-catenin in healing tendons and increased the peak force and stiffness of the healing tendons on postoperative week 2. On postoperative week 8, however, the biomechanical properties of vehicle-treated tendons became similar to those of PH-treated tendons. CONCLUSION: IWR-1 and PH suppressed Wnt/ß-catenin signaling and improved the histological abnormalities of healing tendons. IWR-1, however, compromised the biomechanical properties of healing tendons, whereas PH improved them. CLINICAL RELEVANCE: PH is a candidate repositioned drug that potentially accelerates tendon repair.


Assuntos
Tendão do Calcâneo , Prometazina , Tendão do Calcâneo/lesões , Animais , Fenômenos Biomecânicos , Humanos , Prometazina/metabolismo , Prometazina/farmacologia , Ratos , Ratos Sprague-Dawley , Via de Sinalização Wnt , Cicatrização/fisiologia , beta Catenina/metabolismo , beta Catenina/farmacologia
15.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270030

RESUMO

Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.


Assuntos
Neoplasias , Resposta a Proteínas não Dobradas , Animais , Proliferação de Células , Hidrogênio/metabolismo , Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
16.
Biochem Biophys Res Commun ; 592: 87-92, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35033871

RESUMO

We screened pre-approved drugs for the survival of the Hu5/KD3 human myogenic progenitors. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, promoted the proliferation and survival of Hu5/KD3 cells. Meclozine increased expression of MyoD, but reduced expression of myosin heavy chain and suppressed myotube formation. Withdrawal of meclozine, however, resumed the ability of Hu5/KD3 cells to differentiate into myotubes. We examined the effects of meclozine on mdx mouse carrying a nonsense mutation in the dystrophin gene and modeling for Duchenne muscular dystrophy. Intragastric administration of meclozine in mdx mouse increased the body weight, the muscle mass in the lower limbs, the cross-sectional area of the paravertebral muscle, and improved exercise performances. Previous reports show that inhibition of phosphorylation of ERK1/2 improves muscle functions in mouse models for Emery-Dreifuss muscular dystrophy and cancer cachexia, as well as in mdx mice. We and others previously showed that meclozine blocks the phosphorylation of ERK1/2 in cultured cells. We currently showed that meclozine decreased phosphorylation of ERK1/2 in muscles in mdx mice but not in wild-type mice. This was likely to be one of the underlying mechanisms of the effects of meclozine on mdx mice.


Assuntos
Meclizina/farmacologia , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Meclizina/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Fosforilação/efeitos dos fármacos
17.
BMC Genomics ; 22(1): 104, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541264

RESUMO

BACKGROUND: The human microbiome forms very complex communities that consist of hundreds to thousands of different microorganisms that not only affect the host, but also participate in disease processes. Several state-of-the-art methods have been proposed for learning the structure of microbial communities and to investigate the relationship between microorganisms and host environmental factors. However, these methods were mainly designed to model and analyze single microbial communities that do not interact with or depend on other communities. Such methods therefore cannot comprehend the properties between interdependent systems in communities that affect host behavior and disease processes. RESULTS: We introduce a novel hierarchical Bayesian framework, called BALSAMICO (BAyesian Latent Semantic Analysis of MIcrobial COmmunities), which uses microbial metagenome data to discover the underlying microbial community structures and the associations between microbiota and their environmental factors. BALSAMICO models mixtures of communities in the framework of nonnegative matrix factorization, taking into account environmental factors. We proposes an efficient procedure for estimating parameters. A simulation then evaluates the accuracy of the estimated parameters. Finally, the method is used to analyze clinical data. In this analysis, we successfully detected bacteria related to colorectal cancer. CONCLUSIONS: These results show that the method not only accurately estimates the parameters needed to analyze the connections between communities of microbiota and their environments, but also allows for the effective detection of these communities in real-world circumstances.


Assuntos
Algoritmos , Microbiota , Teorema de Bayes , Simulação por Computador , Humanos , Metagenoma , Metagenômica
18.
Sci Rep ; 10(1): 13138, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753675

RESUMO

Cervical spondylotic myelopathy (CSM) is caused by chronic compression of the spinal cord and is the most common cause of myelopathy in adults. No drug is currently available to mitigate CSM. Herein, we made a rat model of CSM by epidurally implanting an expanding water-absorbent polymer underneath the laminae compress the spinal cord. The CSM rats exhibited progressive motor impairments recapitulating human CSM. CSM rats had loss of spinal motor neurons, and increased lipid peroxidation in the spinal cord. Zonisamide (ZNS) is clinically used for epilepsy and Parkinson's disease. We previously reported that ZNS protected primary spinal motor neurons against oxidative stress. We thus examined the effects of ZNS on our rat CSM model. CSM rats with daily intragastric administration of 0.5% methylcellulose (n = 11) and ZNS (30 mg/kg/day) in 0.5% methylcellulose (n = 11). Oral administration of ZNS ameliorated the progression of motor impairments, spared the number of spinal motor neurons, and preserved myelination of the pyramidal tracts. In addition, ZNS increased gene expressions of cystine/glutamate exchange transporter (xCT) and metallothionein 2A in the spinal cord in CSM rats, and also in the primary astrocytes. ZNS increased the glutathione (GSH) level in the spinal motor neurons of CSM rats. ZNS potentially ameliorates loss of the spinal motor neurons and demyelination of the pyramidal tracts in patients with CSM.


Assuntos
Compressão da Medula Espinal/tratamento farmacológico , Doenças da Medula Espinal/tratamento farmacológico , Espondilose/tratamento farmacológico , Zonisamida/farmacologia , Animais , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Ratos , Ratos Wistar , Compressão da Medula Espinal/metabolismo , Compressão da Medula Espinal/patologia , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Espondilose/metabolismo , Espondilose/patologia
19.
EMBO Rep ; 21(5): e49890, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189459

RESUMO

RNA processing occurs co-transcriptionally through the dynamic recruitment of RNA processing factors to RNA polymerase II (RNAPII). However, transcriptome-wide identification of protein-RNA interactions specifically assembled on transcribing RNAPII is challenging. Here, we develop the targeted RNA immunoprecipitation sequencing (tRIP-seq) method that detects protein-RNA interaction sites in thousands of cells. The high sensitivity of tRIP-seq enables identification of protein-RNA interactions at functional subcellular levels. Application of tRIP-seq to the FUS-RNA complex in the RNAPII machinery reveals that FUS binds upstream of alternative polyadenylation (APA) sites of nascent RNA bound to RNAPII, which retards RNAPII and suppresses the recognition of the polyadenylation signal by CPSF. Further tRIP-seq analyses demonstrate that the repression of APA is achieved by a complex composed of FUS and U1 snRNP on RNAPII, but not by either one alone. Moreover, our analysis reveals that FUS mutations in familial amyotrophic lateral sclerosis (ALS) that impair the FUS-U1 snRNP interaction aberrantly activate the APA sites. tRIP-seq provides new insights into the regulatory mechanism of co-transcriptional RNA processing by RNA processing factors.


Assuntos
Poliadenilação , Proteína FUS de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U1 , Humanos , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
20.
Gen Thorac Cardiovasc Surg ; 68(2): 158-163, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31468277

RESUMO

OBJECTIVE: Bronchiolitis obliterans syndrome arising from chronic airway inflammation is a leading cause of death following lung transplantation. Several studies have suggested that inhaled hydrogen can protect lung grafts from ischemia-reperfusion injury via anti-inflammatory and -oxidative mechanisms. We investigated whether molecular hydrogen-saturated water can preserve lung allograft function in a heterotopic tracheal allograft mouse model of obliterative airway disease METHODS: Obliterative airway disease was induced by heterotopically transplanting tracheal allografts from BALB/c donor mice into C57BL/6 recipient mice, which were subsequently administered hydrogen water (10 ppm) or tap water (control group) (n = 6 each) daily without any immunosuppressive treatment. Histological and immunohistochemical analyses were performed on days 7, 14, and 21. RESULTS: Hydrogen water decreased airway occlusion on day 14. No significant histological differences were observed on days 7 or 21. The cluster of differentiation 4/cluster of differentiation 3 ratio in tracheal allografts on day 14 was higher in the hydrogen water group than in control mice. Enzyme-linked immunosorbent assay performed on day 7 revealed that hydrogen water reduced the level of the pro-inflammatory cytokine interleukin-6 and increased that of forkhead box P3 transcription factor, suggesting an enhancement of regulatory T cell activity. CONCLUSIONS: Hydrogen water suppressed the development of mid-term obliterative airway disease in a mouse tracheal allograft model via anti-oxidant and -inflammatory mechanisms and through the activation of Tregs. Thus, hydrogen water is a potential treatment strategy for BOS that can improve the outcome of lung transplant patients.


Assuntos
Bronquiolite Obliterante/prevenção & controle , Modelos Animais de Doenças , Hidrogênio , Pulmão/fisiopatologia , Traqueia/transplante , Água/administração & dosagem , Obstrução das Vias Respiratórias/etiologia , Aloenxertos , Animais , Bronquiolite Obliterante/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Imunossupressores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA