Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37111542

RESUMO

Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.

2.
Front Immunol ; 13: 889138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634285

RESUMO

Background: Individuals with secondary immunodeficiencies belong to the most vulnerable groups to succumb to COVID-19 and thus are prioritized for SARS-CoV-2 vaccination. However, knowledge about the persistence and anamnestic responses following SARS-CoV-2-mRNA vaccinations is limited in these patients. Methods: In a prospective, open-label, phase four trial we analyzed S1-specific IgG, neutralizing antibodies and cytokine responses in previously non-infected patients with cancer or autoimmune disease during primary mRNA vaccination and up to one month after booster. Results: 263 patients with solid tumors (SOT, n=63), multiple myeloma (MM, n=70), inflammatory bowel diseases (IBD, n=130) and 66 controls were analyzed. One month after the two-dose primary vaccination the highest non-responder rate was associated with lower CD19+ B-cell counts and was found in MM patients (17%). S1-specific IgG levels correlated with IL-2 and IFN-γ responses in controls and IBD patients, but not in cancer patients. Six months after the second dose, 18% of patients with MM, 10% with SOT and 4% with IBD became seronegative; no one from the control group became negative. However, in IBD patients treated with TNF-α inhibitors, antibody levels declined more rapidly than in controls. Overall, vaccination with mRNA-1273 led to higher antibody levels than with BNT162b2. Importantly, booster vaccination increased antibody levels >8-fold in seroresponders and induced anamnestic responses even in those with undetectable pre-booster antibody levels. Nevertheless, in IBD patients with TNF-α inhibitors even after booster vaccination, antibody levels were lower than in untreated IBD patients and controls. Conclusion: Immunomonitoring of vaccine-specific antibody and cellular responses seems advisable to identify vaccination failures and consequently establishing personalized vaccination schedules, including shorter booster intervals, and helps to improve vaccine effectiveness in all patients with secondary immunodeficiencies. Trial registration: EudraCT Number: 2021-000291-11.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Mieloma Múltiplo , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunização Secundária , Hospedeiro Imunocomprometido , Imunoglobulina G , Memória Imunológica , Mieloma Múltiplo/terapia , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Fator de Necrose Tumoral alfa , Vacinação
4.
Anticancer Agents Med Chem ; 19(13): 1609-1617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038078

RESUMO

BACKGROUND: Based on recent studies, new therapeutic strategies have been developed for cancer treatment using microRNAs (miRNAs). With this view, miRNAs manipulating techniques can be considered as novel therapeutic prospects for cancer treatment. In this study, we evaluated the expression of miR-4301 in human lung cancer cell lines and investigated its potential role in cell proliferation and tumor suppression on Non-Small Cell Lung Cancer (NSCLC) cells. METHODS: We used quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to examine the level of miR- 4301 expression in human lung cancer cell lines (A549, QU-DB) and non-malignant lung epithelial cells (HFLF-PI5). Then, we investigated the effect of miR-4301 by transfecting it into these cell lines and probing for cancer cell viability and apoptosis using the MTT assay, flow cytometry and immunofluorescence staining. RESULTS: Our results showed that the expression level of miR-4301 was significantly reduced in human lung cancer cell lines (P<0.001). When miR-4301 was transfected in lung cancer cells, their cell proliferation was suppressed and apoptosis induced. This decline in cell survival was confirmed by the MTT assay. Transfection of miR-4301 caused an increase in early and late apoptotic cells in all lung cancer cell lines tested. CONCLUSIONS: Our findings show that miR-4301 may act as a lung cancer suppressor through targeting of proteins involved in cell proliferation and survival. For this reason, targeting miR-4301 may provide a new strategy for the diagnosis and treatment of patients with this deadly disease. This article is protected by copyright. All rights reserved.


Assuntos
Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Transfecção , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo , Humanos , Reação em Cadeia da Polimerase em Tempo Real
5.
J Leukoc Biol ; 105(3): 519-530, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30657605

RESUMO

The plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is up-regulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogen-induced efferocytosis. The level of uptake of plasminogen-coated apoptotic cells inversely correlates with the TNF-α production by phagocytes indicating tissue clearance without inflammation by this mechanism. Our results reveal an up-to-now undetermined function of M6P/IGF2R in clearance of apoptotic cells, which is crucial for tissue homeostasis.


Assuntos
Fagocitose/efeitos dos fármacos , Plasminogênio/farmacologia , Receptor IGF Tipo 2/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
6.
Allergy ; 74(3): 483-494, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30338531

RESUMO

BACKGROUND: Macrophages can be converted in vitro into immunoregulatory M2b macrophages in the presence of immune complexes (ICs), but the role of the specific subclasses IgG1 or IgG4 in this phenotypic and functional change is not known. OBJECTIVE: We aimed to refine the original method by applying precisely defined ICs of the subclasses IgG4 or IgG1 constructed by two independent methods. METHODS: Monocyte-derived macrophages (MDMs) were treated with M-CSF, followed by IL-4/IL-13 to induce the M2a allergic phenotype. To mimic unspecific or allergen-specific ICs, plates were coated with myeloma IgG1 or IgG4, or with grass pollen allergen Phl p 5 followed by recombinant human Phl p 5-specific IgG1 or IgG4. M2a polarized macrophages were then added, cultured, and examined for cellular markers and cytokines by flow cytometry, ELISA, and rtPCR. Alternatively, immune complexes with IgG1 or IgG4 were formed using protein L. RESULTS: IgG4 ICs down regulated CD163 and CD206 on M2a cells, and significantly increased IL-10, IL-6, TNFα, and CCL1 secretion, indicating a shift to an M2b-like phenotype. Treatment with IgG4 ICs resulted in expression of FcγRII and down modulation of FcγRII compared with IgG1 treated cells (P = 0.0335) or untreated cells (P < 0.00001). CONCLUSION: Immune complexes with subclasses IgG1 and IgG4 can in vitro be generated by plate absorption, and in fluid form by protein L. Cross-linking of FcγRIIb by the IgG4 subclass redirects pro-allergic M2a macrophages to an M2b-like immunosuppressive phenotype. This suggests an interplay of macrophages with IgG4 in immune tolerance, likely relevant in allergen immunotherapy.


Assuntos
Tolerância Imunológica , Imunoglobulina G/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fenótipo , Alérgenos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Biomarcadores , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Receptores de IgG/metabolismo
7.
Brain ; 141(8): 2329-2342, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860501

RESUMO

X-linked adrenoleukodystrophy is caused by ATP-binding cassette transporter D1 (ABCD1) mutations and manifests by default as slowly progressive spinal cord axonopathy with associated demyelination (adrenomyloneuropathy). In 60% of male cases, however, X-linked adrenoleukodystrophy converts to devastating cerebral inflammation and demyelination (cerebral adrenoleukodystrophy) with infiltrating blood-derived monocytes and macrophages and cytotoxic T cells that can only be stopped by allogeneic haematopoietic stem cell transplantation or gene therapy at an early stage of the disease. Recently, we identified monocytes/macrophages but not T cells to be severely affected metabolically by ABCD1 deficiency. Here we found by whole transcriptome analysis that, although monocytes of patients with X-linked adrenoleukodystrophy have normal capacity for macrophage differentiation and phagocytosis, they are pro-inflammatory skewed also in patients with adrenomyloneuropathy in the absence of cerebral inflammation. Following lipopolysaccharide activation, the ingestion of myelin debris, normally triggering anti-inflammatory polarization, did not fully reverse the pro-inflammatory status of X-linked adrenoleukodystrophy macrophages. Immunohistochemistry on post-mortem cerebral adrenoleukodystrophy lesions reflected the activation pattern by prominent presence of enlarged lipid-laden macrophages strongly positive for the pro-inflammatory marker co-stimulatory molecule CD86. Comparative analyses of lesions with matching macrophage density in cases of cerebral adrenoleukodystrophy and acute multiple sclerosis showed a similar extent of pro-inflammatory activation but a striking reduction of anti-inflammatory mannose receptor (CD206) and haemoglobin-haptoglobin receptor (CD163) expression on cerebral adrenoleukodystrophy macrophages. Accordingly, ABCD1-deficiency leads to an impaired plasticity of macrophages that is reflected in incomplete establishment of anti-inflammatory responses, thus possibly contributing to the devastating rapidly progressive demyelination in cerebral adrenoleukodystrophy that only in rare cases arrests spontaneously. These findings emphasize monocytes/macrophages as crucial therapeutic targets for preventing or stopping myelin destruction in patients with X-linked adrenoleukodystrophy.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/imunologia , Macrófagos/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/fisiopatologia , Adulto , Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Doenças Desmielinizantes/metabolismo , Humanos , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/fisiologia , Bainha de Mielina/metabolismo , População Branca , Sequenciamento do Exoma/métodos
8.
Front Immunol ; 9: 852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780382

RESUMO

If misregulated, macrophage (Mϕ)-T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor ß (FRß), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRß+CD39+CD73+ Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.


Assuntos
Artrite Reumatoide/imunologia , Diferenciação Celular , Macrófagos/imunologia , Macrófagos/metabolismo , Purinas/metabolismo , Adenosina/imunologia , Animais , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico , Inflamação/tratamento farmacológico , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Camundongos , Monócitos/efeitos dos fármacos , Líquido Sinovial/citologia , Líquido Sinovial/imunologia
9.
J Biol Chem ; 293(22): 8600-8613, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669808

RESUMO

The plasminogen system is essential for dissolution of fibrin clots, and in addition, it is involved in a wide variety of other physiological processes, including proteolytic activation of growth factors, cell migration, and removal of protein aggregates. On the other hand, uncontrolled plasminogen activation contributes to many pathological processes (e.g. tumor cells' invasion in cancer progression). Moreover, some virulent bacterial species (e.g. Streptococci or Borrelia) bind human plasminogen and hijack the host's plasminogen system to penetrate tissue barriers. Thus, the conversion of plasminogen to the active serine protease plasmin must be tightly regulated. Here, we show that human lactoferrin, an iron-binding milk glycoprotein, blocks plasminogen activation on the cell surface by direct binding to human plasminogen. We mapped the mutual binding sites to the N-terminal region of lactoferrin, encompassed also in the bioactive peptide lactoferricin, and kringle 5 of plasminogen. Finally, lactoferrin blocked tumor cell invasion in vitro and also plasminogen activation driven by Borrelia Our results explain many diverse biological properties of lactoferrin and also suggest that lactoferrin may be useful as a potential tool for therapeutic interventions to prevent both invasive malignant cells and virulent bacteria from penetrating host tissues.


Assuntos
Borrelia/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Lactoferrina/metabolismo , Plasminogênio/antagonistas & inibidores , Streptococcus/metabolismo , Movimento Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Lactoferrina/química , Lactoferrina/genética , Plasminogênio/metabolismo , Conformação Proteica
10.
Water Res ; 141: 428-438, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29409685

RESUMO

Legionella infections are among the most important waterborne infections with constantly increasing numbers of cases in industrialized countries, as a result of aging populations, rising numbers of immunocompromised individuals and increased need for conditioned water due to climate change. Surveillance of water systems is based on microbiological culture-based techniques; however, it has been shown that high percentages of the Legionella populations in water systems are not culturable. In the past two decades, the relevance of such viable but non-culturable (VBNC) legionellae has been controversially discussed, and whether VBNC legionellae can directly infect human macrophages, the primary targets of Legionella infections, remains unclear. In this study, it was demonstrated for the first time that several starved VBNC Legionella strains (four L. pneumophila serogroup 1 strains, a serogroup 6 strain and a L. micdadei strain) can directly infect different types of human macrophages and amoebae even after one year of starvation in ultrapure water. However, under these conditions, the strains caused infection with reduced efficacy, as represented by the lower percentages of infected cells, prolonged time in co-culture and higher multiplicities of infection required. Interestingly, the VBNC cells remained mostly non-culturable even after multiplication within the host cells. Amoebal infection by starved VBNC Legionella, which likely occurs in oligotrophic biofilms, would result in an increase in the bacterial concentration in drinking-water systems. If cells remain in the VBNC state, the real number of active legionellae will be underestimated by the use of culture-based standard techniques. Thus, further quantitative research is needed in order to determine, whether and how many starved VBNC Legionella cells are able to cause disease in humans.


Assuntos
Amoeba/microbiologia , Legionella/patogenicidade , Macrófagos/microbiologia , Técnicas de Cocultura , Humanos , Legionelose , Virulência , Poluentes da Água
11.
Nanomedicine ; 14(1): 123-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939491

RESUMO

Liposomes functionalized with monoclonal antibodies or their antigen-binding fragments have attracted much attention as specific drug delivery devices for treatment of various diseases including cancer. The conjugation of antibodies to liposomes is usually achieved by covalent coupling using cross-linkers in a reaction that might adversely affect the characteristics of the final product. Here we present an alternative strategy for liposome functionalization: we created a recombinant Fab antibody fragment genetically fused on its C-terminus to the hydrophobic peptide derived from pulmonary surfactant protein D, which became inserted into the liposomal bilayer during liposomal preparation and anchored the Fab onto the liposome surface. The Fab-conjugated liposomes specifically recognized antigen-positive cells and efficiently delivered their cargo, the Alexa Fluor 647 dye, into target cells in vitro and in vivo. In conclusion, our approach offers the potential for straightforward development of nanomedicines functionalized with an antibody of choice without the need of harmful cross-linkers.


Assuntos
Anticorpos Monoclonais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Lipossomos/química , Linfoma/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígeno CD48/metabolismo , Antígenos CD59/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Células Jurkat , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Fragmentos de Peptídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Células Tumorais Cultivadas
12.
J Cell Biochem ; 119(8): 6408-6417, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29236292

RESUMO

In several cancers, microRNA (miRNAs) play vital roles in tumor initiation, drug resistance, and metastasis. The aim of this study was to examine the expression levels of miR-4301 in human breast cancer and investigate whether its potential roles involved targeting Dopamine receptor D2 (DRD2). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was also used to examine the expression levels of miR-4301 in human breast cancer cell lines MDA-MB-231, MCF-7, and SKBR3. In these cell lines, MTT assay, immunofluorescence staining, caspase assay, proliferation assay, and flow cytometry were conducted to explore the potential functions of miR-4301. The effects of modulating miR-4301 on transcription levels of DRD2 were subsequently confirmed via qRT-PCR. miR-4301 expression levels were significantly decreased in human breast cancer specimens and cell lines (P < 0.05). Transfection of miR-4301 in breast cancer cells suppressed cell proliferation and induced apoptosis. Expression analysis indicated that miR-4301 was inversely correlated with DRD2 expression in breast cancer specimens. qRT-PCR showed that miR-4301 negatively regulated DRD2 expression. Downregulation of DRD2 expression in MDA-MB-231, MCF-7, and SKBR3 cells suppressed cell proliferation and promoted apoptosis.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/biossíntese , Receptores de Dopamina D2/biossíntese , Adulto , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Receptores de Dopamina D2/genética
13.
PLoS One ; 12(7): e0180900, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742108

RESUMO

A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation.


Assuntos
Jejum/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carga Bacteriana , Células Cultivadas , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Listeriose/imunologia , Listeriose/metabolismo , Listeriose/microbiologia , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptores Toll-Like/metabolismo
14.
J Immunol ; 198(6): 2468-2478, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148733

RESUMO

Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCß, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function.


Assuntos
Basigina/metabolismo , Biomarcadores Tumorais/metabolismo , Citoesqueleto/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Complexos Multiproteicos/metabolismo , Proteômica , Linfócitos T/fisiologia , Basigina/genética , Processos de Crescimento Celular , Chaperona BiP do Retículo Endoplasmático , Proteínas de Ligação ao GTP/metabolismo , Ontologia Genética , Técnicas de Transferência de Genes , Humanos , Células Jurkat , Ativação Linfocitária , Fosforilação , Ligação Proteica , Transdução de Sinais , Estresse Fisiológico
15.
J Immunol ; 197(6): 2229-38, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27534550

RESUMO

Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) ß, a GPI-anchored protein belonging to the folate receptor family. As FRß shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRß, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRß in the plasma membrane of human FRß(+) macrophages and FRß-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRß: that is, we report functional interactions of FRß with receptors mediating cellular adhesion, in particular the CD11b/CD18 ß2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRß(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRß(-) counterparts. We further show that FRß is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRß as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen.


Assuntos
Antígeno CD11b/fisiologia , Antígenos CD18/fisiologia , Colágeno/farmacologia , Receptor 2 de Folato/fisiologia , Macrófagos/fisiologia , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Ácido Fólico/metabolismo , Humanos , Acetato de Tetradecanoilforbol/farmacologia
16.
J Immunol ; 196(3): 1387-99, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26729804

RESUMO

The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression.


Assuntos
Basigina/imunologia , Interleucina-2/biossíntese , Ativação Linfocitária/imunologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Separação Celular , Citometria de Fluxo , Humanos , Immunoblotting , Interleucina-2/imunologia , Células Jurkat , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Transdução Genética
17.
PLoS One ; 10(11): e0143593, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606059

RESUMO

Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.


Assuntos
Chlamydophila pneumoniae/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Viabilidade Microbiana/imunologia , Biomarcadores , Diferenciação Celular , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/microbiologia , Citocinas/biossíntese , Humanos , Imunofenotipagem , Leucócitos Mononucleares , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Fenótipo
18.
J Biomed Nanotechnol ; 11(12): 2243-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510317

RESUMO

Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor ß present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor ß was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor ß. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Ácido Fólico/química , Metotrexato/efeitos adversos , Metotrexato/farmacologia , Animais , Linhagem Celular , Receptores de Folato com Âncoras de GPI/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Camundongos
19.
Immunol Lett ; 165(2): 90-101, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25929803

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a progressive decline in lung function which can be attributed to excessive scarring, inflammation and airway remodelling. Mannose-6-phosphate (M6P) is a strong inhibitor of fibrosis and its administration has been associated with beneficial effects in tendon repair surgery as well as nerve repair after injury. Given this promising therapeutic approach we developed an improved analogue of M6P, namely PXS64, and explored its anti-fibrotic effects in vitro. Normal human lung fibroblasts (NHLF) and human lung fibroblast 19 cells (HF19) were exposed to active recombinant human TGF-ß1 to induce increases in fibrotic markers. rhTGF-ß1 increased constitutive protein levels of fibronectin and collagen in the NHLF cells, whereas HF19 cells showed increased levels of fibronectin, collagen as well as αSMA (alpha smooth muscle actin). PXS64 demonstrated a robust inhibitory effect on all proteins analysed. IPF patient fibroblasts treated with PXS64 presented an improved phenotype in terms of their morphological appearance, as well as a decrease in fibrotic markers (collagen, CTGF, TGF-ß3, tenascin C, αSMA and THBS1). To explore the cell signalling pathways involved in the anti-fibrotic effects of PXS64, proteomics analysis with iTRAQ labelling was performed and the data demonstrated a specific antagonistic effect on the TGF-ß1 pathway. This study shows that PXS64 effectively inhibits the production of extracellular matrix, as well as myofibroblast differentiation during fibrosis. These results suggest that PXS64 influences tissue remodelling by inhibiting TGF-ß1 signalling in NHLF and HF19 cell lines, as well as in IPF patient fibroblasts. Thus PXS64 is a potential candidate for preclinical application in pulmonary fibrosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Manosefosfatos/uso terapêutico , Manosídeos/uso terapêutico , Organofosfonatos/uso terapêutico , Pró-Fármacos/farmacologia , Actinas/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Disponibilidade Biológica , Biomarcadores/metabolismo , Linhagem Celular , Colágeno/metabolismo , Fibroblastos/imunologia , Fibronectinas/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Manosefosfatos/química , Manosídeos/química , Camundongos , Camundongos Knockout , Organofosfonatos/química , Pró-Fármacos/síntese química , Proteômica , Transdução de Sinais , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/imunologia
20.
J Immunol ; 193(6): 2718-32, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127865

RESUMO

The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.


Assuntos
Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Receptor IGF Tipo 2/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Células Jurkat , Ativação Linfocitária/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Receptor IGF Tipo 2/biossíntese , Receptor IGF Tipo 2/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA