Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11137, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045514

RESUMO

A growing body of evidence indicates that cellular metabolism is involved in immune cell functions, including cytokine production. Serine is a nutritionally non-essential amino acid that can be generated by de novo synthesis and conversion from glycine. Serine contributes to various cellular responses, but the role in inflammatory responses remains poorly understood. Here, we show that macrophages rely on extracellular serine to suppress aberrant cytokine production. Depleting serine from the culture media reduced the cellular serine content in macrophages markedly, suggesting that macrophages depend largely on extracellular serine rather than cellular synthesis. Under serine deprivation, macrophages stimulated with lipopolysaccharide showed aberrant cytokine expression patterns, including a marked reduction of anti-inflammatory interleukin-10 expression and sustained expression of interleukine-6. Transcriptomic and metabolomics analyses revealed that serine deprivation causes mitochondrial dysfunction: reduction in the pyruvate content, the NADH/NAD+ ratio, the oxygen consumption rate, and the mitochondrial production of reactive oxygen species (ROS). We also found the role of mitochondrial ROS in appropriate cytokine production. Thus, our results indicate that cytokine production in macrophages is tightly regulated by the nutritional microenvironment.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Serina/metabolismo , Animais , Metabolômica , Camundongos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26483756

RESUMO

The human fibroblast growth factor (FGF) family comprises 22 structurally related polypeptides that play crucial roles in neuronal functions, development, and metabolism. FGFs are classified as intracrine, paracrine, and endocrine FGFs based on their action mechanisms. Paracrine and endocrine FGFs are secreted signaling molecules by acting via cell-surface FGF receptors (FGFRs). Paracrine FGFs require heparan sulfate as a cofactor for FGFRs. In contrast, endocrine FGFs, comprising FGF19, FGF21, and FGF23, require α-Klotho or ß-Klotho as a cofactor for FGFRs. Endocrine FGFs, which are specific to vertebrates, lost heparan sulfate-binding affinity and acquired a systemic signaling system with α-Klotho or ß-Klotho during early vertebrate evolution. The phenotypes of endocrine FGF knockout mice indicate that they play roles in metabolism including bile acid, energy, and phosphate/active vitamin D metabolism. Accumulated evidence for the involvement of endocrine FGFs in human genetic and metabolic diseases also indicates their pathophysiological roles in metabolic diseases, potential risk factors for metabolic diseases, and useful biomarkers for metabolic diseases. The therapeutic utility of endocrine FGFs is currently being developed. These findings provide new insights into the physiological and pathophysiological roles of endocrine FGFs and potential diagnostic and therapeutic strategies for metabolic diseases.

3.
Front Mol Biosci ; 2: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042224

RESUMO

Neudesin was originally identified as a secreted protein with neurotrophic activity, and, thereafter, was also termed neuron-derived neurotrophic factor (NENF) or the candidate oncogene GIG47. Neudesin with a conserved cytochrome 5-like heme/steroid-binding domain activates intracellular signaling pathways possibly through the activation of G protein-coupled receptors. In the brain, hypothalamic Neudesin decreases food intake. Neudesin knockout (KO) mice also exhibit anxiety-like behavior, indicating its roles in the hippocampal anxiety circuitry. Neudesin is also expressed in various peripheral tissues. Neudesin KO mice are strongly resistant to high-fat diet (HFD)-induced obesity due to elevated systemic sympathetic activity, heat production, and adipocytic lipolysis. Neudesin, which is over-expressed or induced by DNA hypomethylation in multiple human cancers, also stimulates tumorigenesis. These findings indicate that Neudesin plays roles in neural functions, energy metabolism, and tumorigenesis and is expected to be a novel target for obesity and anti-cancer treatments.

4.
Sci Rep ; 5: 10049, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25955136

RESUMO

Some neurotrophic factors, which are potent regulators of neuronal development and function, have recently been implicated in the control of energy balance by increasing energy expenditure. We previously identified neudesin as a novel neurotrophic factor with potential roles in the central nervous system. Although neudesin is also expressed in various peripheral tissues including adipose tissue, its physiological roles have not yet been elucidated. We found that neudesin knockout (KO) mice were resistant to high-fat diet-induced obesity and obesity-related metabolic dysfunctions. neudesin KO mice exhibited increased energy expenditure due to increased sympathetic activity, which resulted in increased heat production and fatty acid oxidation in brown adipose tissue and enhanced lipolysis in white adipose tissue. Thus, neudesin, which may be a negative regulator of sympathetic activity, could represent a novel regulator of the development of obesity and obesity-related metabolic dysfunctions.


Assuntos
Dieta Hiperlipídica , Deleção de Genes , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/prevenção & controle , Sistema Nervoso Simpático/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Metabolismo Energético , Comportamento Alimentar , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/deficiência , Proteínas do Tecido Nervoso/deficiência , Tamanho do Órgão , Células PC12 , Ratos
5.
Biol Pharm Bull ; 38(5): 687-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739891

RESUMO

Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse biological activities. While several studies have revealed that Fgf23 plays important roles in the regulation of phosphate and vitamin D metabolism, the additional physiological roles of Fgf23 remain unclear. Although it is believed that osteoblasts/osteocytes are the main sources of Fgf23, we previously found that Fgf23 mRNA is also expressed in the mouse thymus, suggesting that it might be involved in the immune system. In this study we examined the potential roles of Fgf23 in immunological responses. Mouse serum Fgf23 levels were significantly increased following inoculation with Escherichia coli or Staphylococcus aureus or intraperitoneal injection of lipopolysaccharide. We also identified activated dendritic cells and macrophages that potentially contributed to increased serum Fgf23 levels. Nuclear factor-kappa B (NF-κB) signaling was essential for the induction of Fgf23 expression in dendritic cells in response to immunological stimuli. Moreover, we examined the effects of recombinant Fgf23 protein on immune cells in vitro. Fgfr1c, a potential receptor for Fgf23, was abundantly expressed in macrophages, suggesting that Fgf23 might be involved in signal transduction in these cells. Our data suggest that Fgf23 potentially increases the number in macrophages and induces expression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. Collectively, these data suggest that Fgf23 might be intimately involved in inflammatory processes.


Assuntos
Células Dendríticas/metabolismo , Escherichia coli , Fatores de Crescimento de Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Staphylococcus aureus , Animais , Feminino , Fator de Crescimento de Fibroblastos 23 , Inflamação/etiologia , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Timo , Fator de Necrose Tumoral alfa/metabolismo
6.
PLoS One ; 8(7): e69330, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874946

RESUMO

BACKGROUND: A low-carbohydrate, high-fat ketogenic diet (KD) induces hepatic ketogenesis and is believed to affect energy metabolism in mice. As hepatic Fgf21 expression was markedly induced in mice fed KD, we examined the effects of KD feeding on metabolism and the roles of Fgf21 in metabolism in mice fed KD using Fgf21 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: We examined C57BL/6 mice fed KD for 6 or 14 days. Blood ß-hydroxybutyrate levels were greatly increased at 6 days, indicating that hepatic ketogenesis was induced effectively by KD feeding for 6 days. KD feeding for 6 and 14 days impaired glucose tolerance and insulin sensitivity, although it did not affect body weight, blood NEFA, and triglyceride levels. Hepatic Fgf21 expression and blood Fgf21 levels were markedly increased in mice fed KD for 6 days. Blood ß-hydroxybutyrate levels in the knockout mice fed KD for 6 days were comparable to those in wild-type mice fed KD, indicating that Fgf21 is not required for ketogenesis. However, the impaired glucose tolerance and insulin sensitivity caused by KD feeding were improved in the knockout mice. Insulin-stimulated Akt phosphorylation was significantly decreased in the white adipose tissue in wild-type mice fed KD compared with those fed normal chow, but not in the muscle and liver. Its phosphorylation in the white adipose tissue was significantly increased in the knockout mice fed KD compared with wild-type mice fed KD. In contrast, hepatic gluconeogenic gene expression in Fgf21 knockout mice fed KD was comparable to those in the wild-type mice fed KD. CONCLUSIONS/SIGNIFICANCE: The present findings indicate that KD feeding impairs insulin sensitivity in mice due to insulin resistance in white adipose tissue. In addition, our findings indicate that Fgf21 induced to express by KD is a negative regulator of adipocyte insulin sensitivity in adaptation to a low-carbohydrate malnutritional state.


Assuntos
Adipócitos/metabolismo , Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina/genética , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia , Peso Corporal , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Glucagon , Gluconeogênese/genética , Intolerância à Glucose , Insulina/sangue , Corpos Cetônicos/biossíntese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Front Mol Neurosci ; 6: 15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754977

RESUMO

The fibroblast growth factor (FGF) family comprises 22 members with diverse functions in development and metabolism. Fgf20 was originally identified as a new Fgf preferentially expressed in the substantia nigra pars compacta (SNpc). Fgf20, which acts on proximal cells, significantly enhanced the survival of cultured dopaminergic neurons by activating the mitogen-activated protein kinase (MAPK) pathway through Fgf receptor 1c. In the rat model of Parkinson's disease, Fgf20 afforded significant protection against the loss of dopaminergic neurons. The significant correlation of Parkinson's disease with single-nucleotide polymorphisms in FGF20 indicates that the genetic variability of FGF20 can be a Parkinson's disease risk. Neural and embryonic stem (ES) cells have been considered as cell resources for restorative transplantation strategies in Parkinson's disease. Fgf20 promoted the differentiation of these stem cells into dopaminergic neurons, which attenuated neurological symptoms in animal models of Parkinson's disease. These findings indicate the importance of FGF20 for the differentiation and survival of dopaminergic neurons and the etiology and therapy of Parkinson's disease.

8.
Int J Cancer ; 133(1): 108-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23280601

RESUMO

Maitake D (MD)-Fraction is a highly purified soluble ß-glucan derived from Grifola frondosa (an oriental edible mushroom). Intraperitoneal (i.p.) injection of MD-Fraction has been reported to inhibit tumor growth via enhancement of the host immune system. In this study, we demonstrated that oral administration of MD-Fraction as well as i.p. injection significantly inhibited tumor growth in murine tumor models. After oral administration, MD-Fraction was not transferred to the blood in its free form but was captured by antigen-presenting cells such as macrophages and dendritic cells (DCs) present in the Peyer's patch. The captured MD-Fraction was then transported to the spleen, thereby inducing the systemic immune response. Our study showed that MD-Fraction directly induced DC maturation via a C-type lectin receptor dectin-1 pathway. The therapeutic response of orally administered MD-Fraction was associated with (i) induced systemic tumor-antigen specific T cell response via dectin-1-dependent activation of DCs, (ii) increased infiltration of the activated T cells into the tumor and (iii) decreased number of tumor-caused immunosuppressive cells such as regulatory T cells and myeloid-derived suppressor cells. Our preclinical study suggests that MD-Fraction is a useful oral therapeutic agent in the management of patients with cancer.


Assuntos
Antineoplásicos/farmacologia , Grifola , Tolerância Imunológica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , beta-Glucanas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Citocinas/metabolismo , Células Dendríticas/imunologia , Feminino , Citometria de Fluxo , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Nus , Baço/imunologia , Linfócitos T Reguladores/imunologia , beta-Glucanas/administração & dosagem , beta-Glucanas/sangue
9.
Biomol Concepts ; 1(3-4): 297-304, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25962004

RESUMO

Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA