Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 495(1): 962-968, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155177

RESUMO

Although gemcitabine is an effective chemotherapeutic for pancreatic cancer, severe side effects often accompany its use. Since we have discovered that locally administered C1B domain peptides effectively control tumor growth without any side effects, the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer was examined. Two- and three-dimensional cell culture studies clarified that a co-treatment with C1B5 peptide and gemcitabine significantly attenuated growth of PAN02 mouse and PANC-1 human pancreatic cancer cells in 2D and 3D cultures. Although treatment with the low dose of gemcitabine alone (76%) or the C1B5 peptide alone (39%) inhibited tumor growth moderately, a co-treatment with C1B5 peptide and a low dose of gemcitabine markedly inhibited the growth of PAN02 autografts in the mouse peritoneal cavity (94% inhibition) without any noticeable adverse effect. The number of peritoneal cavity-infiltrating neutrophils and granzyme B+ lymphocytes was significantly higher in the co-treatment group than in the control group. A significant increase of granzyme B mRNA expression was also detected in human T cells by the co-treatment. Taken together, the current study suggests that C1B5 peptide offers a remarkably effective combination treatment strategy to reduce side effects associated with gemcitabine, without losing its tumoricidal effect.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fragmentos de Peptídeos/administração & dosagem , Proteína Quinase C/administração & dosagem , Linfócitos T/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Proteína Quinase C/química , Gencitabina
2.
PLoS One ; 10(5): e0123756, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942583

RESUMO

Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/fisiopatologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Análise por Conglomerados , Feminino , Folistatina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Perilipina-2 , Ratos , Reação em Cadeia da Polimerase em Tempo Real
3.
ACS Chem Biol ; 9(7): 1420-5, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24787922

RESUMO

GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (Ki = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range.


Assuntos
Angiotensina II/análogos & derivados , Antineoplásicos/química , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/química
4.
Cytotherapy ; 15(5): 586-97, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474329

RESUMO

BACKGROUND AIMS: Un-engineered human and rat umbilical cord matrix stem cells (UCMSCs) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSCs attenuate tumor growth has not been studied rigorously. METHODS: The possible mechanisms of tumor growth attenuation by rat UCMSCs were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemistry analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines. RESULTS: Rat UCMSCs markedly attenuated tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemistry analysis revealed that most infiltrating lymphocytes in the rat UCMSC-treated tumors were CD3(+) T cells. In addition, treatment with rat UCMSCs significantly increased infiltration of CD8(+) and CD4(+) T cells and natural killer (NK) cells throughout tumor tissue. CD68(+) monocytes/macrophages and Foxp3(+) regulatory T cells were scarcely observed, only in the tumors of the phosphate-buffered saline control group. Microarray analysis of rat UCMSCs demonstrated that monocyte chemotactic protein-1 is involved in rat UCMSC-induced lymphocyte infiltration in the tumor tissues. CONCLUSIONS: These results suggest that naïve rat UCMSCs attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Naïve UCMSCs can be used as powerful therapeutic cells for breast cancer treatment, and monocyte chemotactic protein-1 may be a key molecule to enhance the effect of UCMSCs at the tumor site.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Imunidade Inata , Neoplasias Mamárias Animais/terapia , Cordão Umbilical/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos , Ratos , Ratos Endogâmicos F344 , Células-Tronco/citologia , Células-Tronco/imunologia , Cordão Umbilical/imunologia
5.
Cancer Res ; 72(8): 2057-67, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22389453

RESUMO

Targeted gene delivery, transfection efficiency, and toxicity concerns remain a challenge for effective gene therapy. In this study, we dimerized the HIV-1 TAT peptide and formulated a nanoparticle vector (dTAT NP) to leverage the efficiency of this cell-penetrating strategy for tumor-targeted gene delivery in the setting of intratracheal administration. Expression efficiency for dTAT NP-encapsulated luciferase or angiotensin II type 2 receptor (AT2R) plasmid DNA (pDNA) was evaluated in Lewis lung carcinoma (LLC) cells cultured in vitro or in vivo in orthotopic tumor grafts in syngeneic mice. In cell culture, dTAT NP was an effective pDNA transfection vector with negligible cytotoxicity. Transfection efficiency was further increased by addition of calcium and glucose to dTAT/pDNA NP. In orthotopic tumor grafts, immunohistochemical analysis confirmed that dTAT NP successfully delivered pDNA to the tumor, where it was expressed primarily in tumor cells along with the bronchial epithelium. Notably, gene expression in tumor tissues persisted at least 14 days after intratracheal administration. Moreover, bolus administration of dTAT NP-encapsulated AT2R or TNF-related apoptosis-inducing ligand (TRAIL) pDNA markedly attenuated tumor growth. Taken together, our findings offer a preclinical proof-of-concept for a novel gene delivery system that offers an effective intratracheal strategy for administering lung cancer gene therapy.


Assuntos
Carcinoma Pulmonar de Lewis/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Nanopartículas/administração & dosagem , Receptor Tipo 2 de Angiotensina/genética , Animais , Carcinoma Pulmonar de Lewis/genética , Feminino , Vetores Genéticos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Produtos do Gene tat do Vírus da Imunodeficiência Humana
6.
Mol Pharm ; 8(5): 1549-58, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21851062

RESUMO

Rat umbilical cord matrix stem cells (UCMSC) have been shown to exhibit a remarkable ability to control rat mammary adenocarcinoma (Mat B III) cell proliferation both in vivo and in vitro. To study the underlying mechanisms and genes involved in Mat B III growth attenuation, total RNA was extracted from the naive rat UCMSC alone and those cocultured with Mat B III in Transwell culture dishes. Gene expression profiles of naive rat UCMSC alone and those cocultured with Mat B III cells were investigated by microarray analysis using an Illumina RatRef-12 Expression BeadChip. The comparison of gene expression profiles between untreated and cocultured rat UCMSC identified five upregulated candidate genes (follistatin (FST), sulfatase1 (SULF-1), glucose phosphate isomerase (GPI), HtrA serine peptidase (HTRA1), and adipocyte differentiation-related protein (ADRP)) and two downregulated candidate genes (transforming growth factor, beta-induced, 68 kDa (TGFßI) and podoplanin (PDPN)) based upon the following screening criteria: (1) expression of the candidate genes should show at least a 1.5-fold change in rat UCMSC cocultured with Mat B III cells; (2) candidate genes encode secretory proteins; and (3) they encode cell growth-related proteins. Following confirmation of gene expression by real-time PCR, ADRP, SULF-1 and GPI were selected for further analysis. Addition of specific neutralizing antibodies against these three gene products or addition of gene-specific siRNA's individually in cocultures of 1:20 rat UCMSC:Mat B III cells significantly increased cell proliferation, implying that these gene products are produced under the cocultured condition and functionally attenuate cell growth. Immunoprecipitation followed by Western blot analysis demonstrated that these proteins are indeed secreted into the culture medium. Individual overexpression of these three genes in rat UCMSC significantly enhanced UCMSC-dependent inhibition of cell proliferation in coculture. These results suggest that ADRP, SULF-1 and GPI act as tumor suppressor genes, and these genes might be involved in rat UCMSC-dependent growth attenuation of rat mammary tumors.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Cordão Umbilical/citologia , Adenocarcinoma/terapia , Animais , Neoplasias da Mama/terapia , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Células-Tronco Embrionárias/transplante , Feminino , Perfilação da Expressão Gênica , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Perilipina-2 , Gravidez , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Endogâmicos F344 , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética , Sulfotransferases/metabolismo , Proteínas Supressoras de Tumor/genética
7.
Lung Cancer ; 70(1): 28-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20138387

RESUMO

Mesenchymal stem cells derived from the human umbilical cord matrix (hUCMSCs) have great potential for therapeutic use for multiple diseases. The strategy that uses therapeutic gene-transfected hUCMSCs as cellular vehicles for targeted biologic agent delivery has solved the problem of short half-life or excessive toxicity of biological agent(s) in vivo. Interferon-beta (IFN-beta) has demonstrated a potent antitumor effect on many types of cancer cell lines in vivo. The aim of this study was to determine the anti-cancer effect of IFN-beta gene-transfected hUCMSCs (IFN-beta-hUCMSCs) on cells derived from bronchioloalveolar carcinoma, a subset of lung adenocarcinoma that is difficult to treat. The co-culture of a small number of IFN-beta-hUCMSCs with the human bronchioloalveolar carcinoma cell lines H358 or SW1573 significantly inhibited growth of both types of carcinoma cell lines. The culture medium conditioned by these cells also significantly attenuated the growth of both carcinoma cells, but this attenuation was abolished by adding anti-IFN-beta antibody. Finally, systemic administration of IFN-beta-hUCMSCs through the tail vein markedly attenuated growth of orthotopic H358 bronchioloalveolar carcinoma xenografts in SCID mice by increasing apoptosis. These results clearly indicate that IFN-beta-hUCMSCs caused cell death of bronchioloalveolar carcinoma cells through IFN-beta production, thereby attenuating tumor growth in vivo. These results indicate that IFN-beta-hUCMSCs are a powerful anti-cancer cytotherapeutic tool for bronchioloalveolar carcinoma.


Assuntos
Adenocarcinoma Bronquioloalveolar/cirurgia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Interferon beta/biossíntese , Neoplasias Pulmonares/cirurgia , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical/citologia , Adenocarcinoma Bronquioloalveolar/patologia , Animais , Morte Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Meios de Cultivo Condicionados , Feminino , Expressão Gênica , Humanos , Interferon beta/genética , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
BMC Cancer ; 10: 67, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181281

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive human malignancies, with a very poor prognosis. To evaluate the effect of angiotensin II (Ang II) type 2 receptor (AT2) expression in the host's body on the growth of pancreatic carcinoma, we have investigated the growth of mouse pancreatic ductal carcinoma grafts in syngeneic wild type and AT2 receptor-deficient (AT2-KO) mice. METHODS: The role of AT2 receptor-signaling in stromal cells on the growth of murine pancreatic carcinoma cells (PAN02) was studied using various in vitro and in vivo assays. In vivo cell proliferation, apoptosis, and vasculature in tumors were monitored by Ki-67 immunostaining, TUNEL assay, and von Willebrand factor immunostaining, respectively. In the co-culture study, cell proliferation was measured by MTT cell viability assay. All the data were analyzed using t-test and data were treated as significant when p < 0.05. RESULTS: Our results show that the growth of subcutaneously transplanted syngeneic xenografts of PAN02 cells, mouse pancreatic ductal carcinoma cells derived from the C57/BL6 strain, was significantly faster in AT2-KO mice compared to control wild type mice. Immunohistochemical analysis of tumor tissue revealed significantly more Ki-67 positive cells in xenografts grown in AT2-KO mice than in wild type mice. The index of apoptosis is slightly higher in wild type mice than in AT2-KO mice as evaluated by TUNEL assay. Tumor vasculature number was significantly higher in AT2-KO mice than in wild type mice. In vitro co-culture studies revealed that the growth of PAN02 cells was significantly decreased when grown with AT2 receptor gene transfected wild type and AT2-KO mouse-derived fibroblasts. Faster tumor growth in AT2-KO mice may be associated with higher VEGF production in stromal cells. CONCLUSIONS: These results suggest that Ang II regulates the growth of pancreatic carcinoma cells through modulating functions of host stromal cells; Moreover, Ang II AT2 receptor signaling is a negative regulator in the growth of pancreatic carcinoma cells. These findings indicate that the AT2 receptor in stromal fibroblasts is a potentially important target for chemotherapy for pancreatic cancer.


Assuntos
Carcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Receptor Tipo 2 de Angiotensina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Fator de von Willebrand/metabolismo
9.
J Invest Dermatol ; 121(1): 165-71, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839577

RESUMO

It was reported that adrenocorticotropic hormone stimulates melanogenesis in cultured melanocytes. Stress (high population density and restraint stress) induced a significant increase in adrenocorticotropic hormone levels in plasma and skin compared to control. The serum obtained from HR-1 x HR/De F1 female mice subjected to stress showed significantly increased tyrosinase activity in human melanocytes compared to that from nonstressed mice. The increase in tyrosinase activity was inhibited in the presence of 10 nM corticostatin, an adrenocorticotropic hormone inhibitor. The aim of this study was to examine whether adrenocorticotropic hormone released into the circulation under stressful conditions is associated with the regulation of ultraviolet-induced pigmentation. Mice divided into three groups were housed for 22 d under the following conditions: five mice per cage (control); 10 mice per cage (high population density); restraint stress 4 h per d. The animals were exposed to ultraviolet-B irradiation (72 mJ per cm2, thrice per wk). After ultraviolet-B irradiation, delayed tanning was marked in stressed mice. The number of dihydroxyphenylalanine-positive melanocytes also significantly increased in stressed animals. Pretreatment with 100 microg of corticostatin inhibited the augmentation of the stress-induced pigmentary response and the increase in dihydroxyphenylalanine-positive melanocytes after ultraviolet irradiation. Adrenocorticotropic hormone released by stress may activate tyrosinase in melanocytes, resulting in the augmentation of ultraviolet-induced pigmentation. These results suggest that adrenocorticotropic hormone is at least partly responsible for the sensitivity of the pigmentary response after ultraviolet irradiation under stressful conditions.


Assuntos
Pigmentação da Pele/fisiologia , Pigmentação da Pele/efeitos da radiação , Estresse Fisiológico/fisiopatologia , Hormônio Adrenocorticotrópico/sangue , Animais , Células Cultivadas , Feminino , Hiperpigmentação/metabolismo , Hiperpigmentação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Melanócitos/citologia , Melanócitos/enzimologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Pelados , Monofenol Mono-Oxigenase/metabolismo , Peptídeos/farmacologia , Restrição Física , Pigmentação da Pele/efeitos dos fármacos , Estresse Fisiológico/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA