Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 73(1): 55-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171731

RESUMO

Highly pure 2,3-dioleoyl-1-O-alkyl glyceryl ether (DOGE), whose 1-position is a lipase-tolerant ether bond, was chemically synthesized and its detailed regioselectivity and acyl transfer were confirmed. During ethanolysis using immobilized Candida antarctica lipase B (CAL-B) with DOGE as the substrate, monooleoyl-1-O-alkyl glyceryl ethers (MOGEs) and a few 1-alkyl glyceryl ethers were formed upon consumption of the substrate. The structure of MOGE was confirmed using nuclear magnetic resonance spectroscopy and only the isomer of 2-MOGE was formed, indicating that CAL-B has complete α- regiospecificity. During ethanolysis, 3-MOGE was formed via acyl migration. These results indicate that the formation of 1-alkyl glyceryl ethers is not due to the imperfect regiospecificity of CAL-B, but rather due to ethanolysis of the formed 3-MOGE. The ethanolysis rate at the 3-α-position of DOGE was faster and the rate of acyl transfer was slightly slower for chain lengths greater than 14. These results show for the first time that both deacylation at the 3-position and acyl migration from the 2- to 3-position are affected by the structure of 1-position.


Assuntos
Etanol , Éteres de Glicerila , Etanol/química , Lipase/química , Proteínas Fúngicas/química , Enzimas Imobilizadas/química
2.
RSC Adv ; 13(13): 8630-8635, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936818

RESUMO

The capabilities and performance of γ-titanium phosphate (γ-TiP) with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a latent thermal catalyst were investigated by the copolymerization of glycidyl phenyl ether (GPE) and hexahydro-4-methylphthalic anhydride (MHHPA) at different temperatures for a period of one hour. Polymerization was not observed until the reactants were heated to 100 °C. Upon increasing the temperature to 120 °C, the conversion in the presence of γ-TiP·DBU as a catalyst showed 98% conversion in 1 h. The thermal stability of GPE and MHHPA reacted in the presence of γ-TiP·DBU at 40 °C for 144 h resulted in less than 7% conversion of GPE. The conversion of GPE did not show a significant increase at 40 °C.

3.
ACS Appl Mater Interfaces ; 14(36): 41618-41628, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36043393

RESUMO

In this study, we report on the fabrication of photo/thermo dual stimulus-responsive liquid marbles (LMs) that can be disrupted by light irradiation and/or heating. To stabilize the LMs, we synthesized micrometer-sized stearic acid (SA) particles coated with overlayers of polypyrrole (PPy) by aqueous chemical oxidative seeded dispersion polymerization. The SA/PPy core-shell particles could adsorb at the air-water interface to stabilize LMs by rolling water droplets on the particle powder bed. The presence of SA, known as a phase-change material, which undergoes a transition from solid to liquid by heating, and PPy, which can transduce light to heat, gives rise to the photo and thermo dual stimulus-responsive characters of the LMs. The disruption of the LMs could be induced in a cascade manner: light irradiation on the LM induced a temperature increase, followed by melting of the SA component on the LM surface, leading to its disruption and release of the inner water. The disruption time is linked to the PPy loading and light irradiation power, and it can be tuned from quasi-instantaneous to a few tens of seconds. The melting of SA due to a light-induced phase change from the solid to liquid state is a new mechanism to trigger the disruption of LMs. We finally demonstrated two applications of the LMs as a light-responsive microreactor and a sensor.

4.
Langmuir ; 26(9): 6230-9, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20146495

RESUMO

Polypyrrole-palladium (PPy-Pd) nanocomposite was deposited in situ from aqueous solution onto micrometer-sized polystyrene (PS) latex particles. The PS seed particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. PPy-Pd nanocomposite loading onto the PS seed latex particles was systematically controlled over a wide range (10-60 wt %) by changing the weight ratio of the PS latex and PPy-Pd nanocomposite. Pd loading was also controlled between 6 and 33 wt %. The conductivity of pressed pellets increased with the PPy-Pd nanocomposite loading and four-point probe measurements indicated conductivities ranging from 3.0 x 10(-1) to 7.9 x 10(-6) S cm(-1). Hollow capsule and broken egg-shell morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed that the production of elemental Pd and X-ray photoelectron spectroscopy indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. The nanocomposite particles functioned as an efficient catalyst for Suzuki-type coupling reactions in aqueous media for the formation of carbon-carbon bonds.


Assuntos
Látex/química , Nanocompostos/química , Paládio/química , Polímeros/química , Pirróis/química , Água/química , Catálise , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia Fotoeletrônica , Poliestirenos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA