Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 609: 183-188, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35452959

RESUMO

Effective cancer immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute special microenvironments that exclude T cells and resist immunotherapy. Cholesterol sulfate (CS) is a product of sulfotransferase SULT2B1b and acts as an endogenous inhibitor of DOCK2, a Rac activator essential for migration and activation of lymphocytes. We have recently shown that cancer-derived CS prevents tumor infiltration by effector T cells. Therefore, SULT2B1b may be a therapeutic target to dampen CS-mediated immune evasion. Here, we identified 3ß-hydroxy-5-cholenoic acid (3ß-OH-5-Chln) as a cell-active inhibitor of SULT2B1b. 3ß-OH-5-Chln inhibited the cholesterol sulfotransferase activity of SULT2B1b in vitro and suppressed CS production from cancer cells expressing SULT2B1b. In vivo administration of 3ß-OH-5-Chln locally reduced CS level in murine CS-producing tumors and increased infiltration of CD8+ T cells. When combined with immune checkpoint blockade or antigen-specific T cell transfer, 3ß-OH-5-Chln suppressed the growth of CS-producing tumors. These results demonstrate that pharmacological inhibition of SULT2B1b can promote antitumor immunity through suppressing CS-mediated T cell exclusion.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Ésteres do Colesterol , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Camundongos , Neoplasias/tratamento farmacológico , Sulfotransferases , Microambiente Tumoral
2.
J Am Chem Soc ; 143(47): 19844-19855, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787412

RESUMO

Post-translational modifications (PTMs) of proteins are a biological mechanism for reversibly controlling protein function. Synthetic protein modifications (SPMs) at specific canonical amino acids can mimic PTMs. However, reversible SPMs at hydrophobic amino acid residues in proteins are especially limited. Here, we report a tyrosine (Tyr)-selective SPM utilizing persistent iminoxyl radicals, which are readily generated from sterically hindered oximes via single-electron oxidation. The reactivity of iminoxyl radicals with Tyr was dependent on the steric and electronic demands of oximes; isopropyl methyl piperidinium oxime 1f formed stable adducts, whereas the reaction of tert-butyl methyl piperidinium oxime 1o was reversible. The difference in reversibility between 1f and 1o, differentiated only by one methyl group, is due to the stability of iminoxyl radicals, which is partly dictated by the bond dissociation energy of oxime O-H groups. The Tyr-selective modifications with 1f and 1o proceeded under physiologically relevant, mild conditions. Specifically, the stable Tyr-modification with 1f introduced functional small molecules, including an azobenzene photoswitch, to proteins. Moreover, masking critical Tyr residues by SPM with 1o, and subsequent deconjugation triggered by the treatment with a thiol, enabled on-demand control of protein functions. We applied this reversible Tyr modification with 1o to alter an enzymatic activity and the binding affinity of a monoclonal antibody with an antigen upon modification/deconjugation. The on-demand ON/OFF switch of protein functions through Tyr-selective and reversible covalent-bond formation will provide unique opportunities in biological research and therapeutics.


Assuntos
Radicais Livres/química , Iminas/química , Peptídeos/química , Proteínas/química , Tirosina/química , Sequência de Aminoácidos , Animais , Canavalia/química , Bovinos , Galinhas , Humanos , Oximas/química
3.
RSC Adv ; 10(28): 16727-16731, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498849

RESUMO

We developed conjugates between monoclonal antibody (mAb) and folic acid (FA) by using a tryptophan (Trp)-selective reaction, which yields relatively homogenous products compared to conventional methods. The obtained mAb-FA conjugates showed significant cellular cytotoxicity toward folate receptor-expressing cancer cells, demonstrating that the conjugates retained the Fc region's original function.

4.
Chem Commun (Camb) ; 54(86): 12222-12225, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310900

RESUMO

A catalytic one-step synthesis of peptide thioacids was developed. The oxygen-sulfur atom exchange reaction converted the carboxy group at the C-terminus of the peptides into a thiocarboxy group with suppressed epimerization. This method was successfully applied to the synthesis of the peptide drug leuprorelin via an iterative fragment-coupling protocol.


Assuntos
Leuprolida/síntese química , Peptídeos/química , Compostos de Sulfidrila/química , Catálise , Leuprolida/química , Ácidos Sulfênicos/química
5.
Biochem Biophys Res Commun ; 497(1): 298-304, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29432733

RESUMO

Rac1 is a member of the Rho family of small GTPases that regulates cytoskeletal reorganization, membrane polarization, cell migration and proliferation. Recently, a self-activating mutation of Rac1, Rac1P29S, has been identified as a recurrent somatic mutation frequently found in sun-exposed melanomas, which possesses increased inherent GDP/GTP exchange activity and cell transforming ability. However, the role of cellular Rac1-interacting proteins in the transforming potential of Rac1P29S remains unclear. We found that the catalytic domain of DOCK1, a Rac-specific guanine nucleotide exchange factor (GEF) implicated in malignancy of a variety of cancers, can greatly accelerate the GDP/GTP exchange of Rac1P29S. Enforced expression of Rac1P29S induced matrix invasion and macropinocytosis in wild-type (WT) mouse embryonic fibroblasts (MEFs), but not in DOCK1-deficient MEFs. Consistently, a selective inhibitor of DOCK1 that blocks its GEF function suppressed the invasion and macropinocytosis in WT MEFs expressing Rac1P29S. Human melanoma IGR-1 and breast cancer MDA-MB-157 cells harbor Rac1P29S mutation and express DOCK1 endogenously. Genetic inactivation and pharmacological inhibition of DOCK1 suppressed their invasion and macropinocytosis. Taken together, these results indicate that DOCK1 is a critical regulator of the malignant phenotypes induced by Rac1P29S, and suggest that targeting DOCK1 might be an effective approach to treat cancers associated with Rac1P29S mutation.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Pinocitose/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Mutação/genética , Invasividade Neoplásica
6.
Cell Rep ; 19(5): 969-980, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467910

RESUMO

Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl-2(1H)-pyridone (TBOPP) as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Piridonas/farmacologia , Proteínas rac de Ligação ao GTP/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Pinocitose/efeitos dos fármacos , Piridonas/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
7.
Nat Chem ; 8(10): 974-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27657874

RESUMO

Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-ß-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid ß-protein (Aß) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aß-binding peptide attenuated the Aß pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, ß2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Benzotiazóis/metabolismo , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Animais , Benzotiazóis/química , Benzotiazóis/efeitos da radiação , Benzotiazóis/toxicidade , Catálise , Desenho de Fármacos , Humanos , Insulina/química , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Luz , Modelos Químicos , Oligopeptídeos/química , Oligopeptídeos/efeitos da radiação , Oligopeptídeos/toxicidade , Oxirredução , Células PC12 , Fragmentos de Peptídeos/química , Pré-Albumina/química , Pré-Albumina/metabolismo , Ligação Proteica , Multimerização Proteica , Teoria Quântica , Ratos , Oxigênio Singlete/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
8.
Angew Chem Int Ed Engl ; 53(25): 6501-5, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24826926

RESUMO

The site-specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine-selective peptide-cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water-soluble copper-organoradical conjugate. The method is applicable to the site-selective cleavage of polypeptides that possess various functional groups. Peptides comprising D-amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site-selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.


Assuntos
Cobre/química , Oxigênio/química , Peptídeos/química , Proteínas/química , Serina/química , Água/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Oxirredução , Solubilidade
9.
Org Lett ; 15(8): 1918-21, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23578034

RESUMO

Fe-catalyzed direct dehydrogenative C(3)-functionalization of tertiary arylamines was developed via activation of the sp(3) C(3)-H bond. The reaction is applicable to both cyclic and acyclic amines. The key process is the catalytic desaturative enamine formation from tertiary amines and position-selective C-C bond formation (addition to nitro olefins) at the ß-carbon. Products can be converted to versatile and unique nitrogen-containing molecules.


Assuntos
Aminas/química , Aminas/síntese química , Ferro/química , Carbono/química , Catálise , Estrutura Molecular , Nitrogênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA