Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 553: 117705, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086498

RESUMO

Glioblastoma multiforme (GBM) is the most prevalent primary tumor found in the central nervous system, accounting for 70% of all adult brain tumors. The median overall survival rate is one year post-diagnosis with treatment, and only four months without treatment. Current GBM diagnostic methods, such as magnetic resonance imaging (MRI), surgery, and brain biopsies, have limitations. These include difficulty distinguishing between tumor recurrence and post-surgical necrotic regions, and operative risks associated with obtaining histological samples through direct surgery or biopsies. Consequently, there is a need for rapid, inexpensive, and minimally invasive techniques for early diagnosis and improved subsequent treatment. Research has shown that tumor-derived exosomes containing various long non-coding RNAs (lncRNAs) play critical regulatory roles in immunomodulation, cancer metastasis, cancer development, and drug resistance in GBM. They regulate genes that enhance cancer growth and progression and alter the expression of several key signaling pathways. Due to the specificity and sensitivity of exosomal lncRNAs, they have the potential to be used as biomarkers for early diagnosis and prognosis, as well as to monitor a patient's response to chemotherapy for GBM. In this review, we discuss the role of exosomal lncRNAs in the pathogenesis of GBM and their potential clinical applications for early diagnosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Recidiva Local de Neoplasia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
Bioorg Chem ; 103: 104123, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781343

RESUMO

Today, Alzheimer's disease (AD) as the most prevalent type of dementia turns into one of the most severe health problems. Neurofibrillary tangle (NFT), mostly comprised of fibrils formed by Tau, is a hallmark of a class of neurodegenerative diseases. Tau protein promotes assembly and makes stable microtubules that play a role in the appropriate function of neurons. Polyanionic cofactors such as heparin, and azo dyes, can induce aggregation of tau protein in vitro. Sunset Yellow is a food colorant used widely in food industries. In the current work, we introduced degradation product (DP) of Sunset Yellow as an effective inducer of Tau aggregation. Two Tau aggregation inducers were produced, and then the aggregation kinetics and the structure of 1N4R Tau amyloid fibrils were characterized using ThT fluorescence spectroscopy, X-Ray Diffraction (XRD), circular dichroism (CD) and atomic force microscopy (AFM). Also, the toxic effects of the induced aggregates on RBCs and SH-SY5Y cells were demonstrated by hemolysis and LDH assays, respectively. Both inducers efficiently accelerated the formation of the amyloid fibril. Along with the confirmation of the ß-sheets structure in Tau aggregates by Far-UV CD spectra, X-ray diffractions revealed the typical cross-ß diffraction pattern. The oligomer formation in the presence of DPs was also confirmed by AFM. The possible in vivo effect of artificial azo dyes on Tau aggregation should be considered seriously as a newly opened dimension in food safety and human health.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Compostos Azo/farmacologia , Corantes de Alimentos/farmacologia , Proteínas tau/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Compostos Azo/química , Relação Dose-Resposta a Droga , Corantes de Alimentos/química , Corantes de Alimentos/metabolismo , Humanos , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Solubilidade , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Água/química , Proteínas tau/isolamento & purificação , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA