Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795451

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Astrócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Maturidade Sexual/fisiologia
2.
Sci Rep ; 11(1): 1996, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479437

RESUMO

Female puberty is subject to Polycomb Group (PcG)-dependent transcriptional repression. Kiss1, a puberty-activating gene, is a key target of this silencing mechanism. Using a gain-of-function approach and a systems biology strategy we now show that EED, an essential PcG component, acts in the arcuate nucleus of the hypothalamus to alter the functional organization of a gene network involved in the stimulatory control of puberty. A central node of this network is Kdm6b, which encodes an enzyme that erases the PcG-dependent histone modification H3K27me3. Kiss1 is a first neighbor in the network; genes encoding glutamatergic receptors and potassium channels are second neighbors. By repressing Kdm6b expression, EED increases H3K27me3 abundance at these gene promoters, reducing gene expression throughout a gene network controlling puberty activation. These results indicate that Kdm6b repression is a basic mechanism used by PcG to modulate the biological output of puberty-activating gene networks.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Kisspeptinas/genética , Complexo Repressor Polycomb 2/genética , Puberdade/genética , Animais , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Neurônios/metabolismo , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas/genética , Puberdade/fisiologia , Ratos , Biologia de Sistemas
3.
Sci Rep ; 10(1): 10073, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572045

RESUMO

Cats are a critical pre-clinical model for studying adeno-associated virus (AAV) vector-mediated gene therapies. A recent study has described the high prevalence of anti-AAV neutralizing antibodies among domestic cats in Switzerland. However, our knowledge of pre-existing humoral immunity against various AAV serotypes in cats is still limited. Here, we show that, although antibodies binding known AAV serotypes (AAV1 to AAV11) are prevalent in cats living in the Northeastern United States, these antibodies do not necessarily neutralize AAV infectivity. We analyzed sera from 35 client-owned, 20 feral, and 30 specific pathogen-free (SPF) cats for pre-existing AAV-binding antibodies against the 11 serotypes. Antibody prevalence was 7 to 90% with an overall median of 50%. The AAV-binding antibodies showed broad reactivities with other serotypes. Of 44 selected antibodies binding AAV2, AAV6 or AAV9, none exhibited appreciable neutralizing activities. Instead, AAV6 or AAV9-binding antibodies showed a transduction-enhancing effect. AAV6-binding antibodies were highly prevalent in SPF cats (83%), but this was primarily due to cross-reactivity with preventive vaccine-induced anti-feline panleukopenia virus antibodies. These results indicate that prevalent pre-existing immunity in cats is not necessarily inhibitory to AAV and highlight a substantial difference in the nature of AAV-binding antibodies in cats living in geographically different regions.


Assuntos
Anticorpos Antivirais/metabolismo , Dependovirus/imunologia , Soro/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Gatos , Dependovirus/classificação , Imunidade Humoral , New England , Sorogrupo , Suíça , Transdução Genética
4.
Hum Mol Genet ; 28(8): 1357-1368, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30608578

RESUMO

The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Puberdade Tardia/genética , Securina/genética , Adolescente , Adulto , Animais , Criança , Feminino , Regulação da Expressão Gênica/genética , Hormônio Liberador de Gonadotropina/genética , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Puberdade/genética , Puberdade/fisiologia , RNA Mensageiro/genética , Securina/fisiologia , Maturidade Sexual/genética , Transativadores/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma , Adulto Jovem
5.
Brain Res ; 1697: 45-52, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902467

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na+, K+-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K+) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K+ conductances functionally associated with NKA and leads to stunted neuronal growth.


Assuntos
Proteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Plasticidade Neuronal/genética , Fosfoproteínas/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase , Masculino , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Fosfoproteínas/genética , Potássio/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Nat Commun ; 9(1): 57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302059

RESUMO

Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Hipotálamo/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Puberdade/genética , Animais , Sistemas CRISPR-Cas , Cromatina , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Kisspeptinas/genética , Macaca mulatta , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Taquicininas/genética
7.
Endocrinology ; 157(8): 3224-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27355492

RESUMO

Llamas are considered to be reflex ovulators. However, semen from these animals is reported to be rich in ovulation-inducing factor(s), one of which has been identified as nerve growth factor (NGF). These findings suggest that ovulation in llamas may be elicited by chemical signals contained in semen instead of being mediated by neural signals. The present study examines this notion. Llamas displaying a preovulatory follicle were assigned to four groups: group 1 received an intrauterine infusion (IUI) of PBS; group 2 received an IUI of seminal plasma; group 3 was mated to a male whose urethra had been surgically diverted (urethrostomized male); and group 4 was mated to an intact male. Ovulation (detected by ultrasonography) occurred only in llamas mated to an intact male or given an IUI of seminal plasma and was preceded by a surge in plasma LH levels initiated within an hour after coitus or IUI. In both ovulatory groups, circulating ß-NGF levels increased within 15 minutes after treatment, reaching values that were greater and more sustained in llamas mated with an intact male. These results demonstrate that llamas can be induced to ovulate by seminal plasma in the absence of copulation and that copulation alone cannot elicit ovulation in the absence of seminal plasma. In addition, our results implicate ß-NGF as an important mediator of seminal plasma-induced ovulation in llamas because ovulation does not occur if ß-NGF levels do not increase in the bloodstream, a change that occurs promptly after copulation with an intact male or IUI of seminal plasma.


Assuntos
Camelídeos Americanos/fisiologia , Fator de Crescimento Neural/farmacologia , Indução da Ovulação/veterinária , Sêmen/fisiologia , Animais , Copulação , Corpo Lúteo/diagnóstico por imagem , Corpo Lúteo/fisiologia , Feminino , Inseminação Artificial/métodos , Inseminação Artificial/veterinária , Hormônio Luteinizante/sangue , Masculino , Fator de Crescimento Neural/sangue , Folículo Ovariano/citologia , Folículo Ovariano/diagnóstico por imagem , Ovulação/efeitos dos fármacos , Ovulação/fisiologia , Progesterona/sangue , Ultrassonografia
8.
Int J Clin Exp Pathol ; 8(9): 10192-203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617728

RESUMO

Epithelial ovarian cancer is one of the most lethal of gynecological malignancies. Due to its lack of early symptoms, detection usually occurs when the tumor is no longer confined to the ovary. We previously identified Fbxw15, a gene encoding an F-box protein in the mouse ovary, and showed that its expression is developmentally regulated. Here we report the molecular analysis of its human homologue, FBXW12 in epithelial ovarian tumors. To search for FBXW12 gene mutations, we PCR-amplified and sequenced the coding region of FBXW12, the gene's 5-untranslated region and the proximal promoter in each of 30 EOC tumors. Promoter methylation was determined by DNA bisulfite conversion, followed by methylation specific PCR. FBXW12 intracellular localization was identified by means of immunohistochemistry. A complete deletion of the gene's coding region, the 5'-UTR and the proximal promoter, was observed in 3 EOC samples. Eight of the remaining 27, had a deletion of the 5'-UTR, and the proximal promoter. FBXW12 mRNA was detected in 2 of the 19 samples without deletions. The methylation specific PCR results demonstrated CpGs methylation in the FBXW12 proximal promoter. Immunohistochemistry assay revealed that within the normal ovary, FBXW12 has an oocyte specific expression, whereas in EOC samples it is present in the ovarian surface epithelium. Our results indicate that the FBXW12 gene is deleted in approximately ten percent of the EOC cases studied; such deletions comprised either the FBXW12 promoter or the mRNA-encoding region. Moreover, FBXW12 could be epigenetically silenced by CpGs methylation in some of these EOC cases.


Assuntos
Metilação de DNA , Proteínas F-Box/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Adolescente , Adulto , Idoso , Carcinoma Epitelial do Ovário , Proteínas F-Box/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Adulto Jovem
9.
Nat Commun ; 6: 10195, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26671628

RESUMO

In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.


Assuntos
Epigênese Genética , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Puberdade/genética , RNA Mensageiro/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Hormônio Foliculoestimulante/metabolismo , Fatores de Transcrição GATA/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Histona Desmetilases/metabolismo , Hibridização in Situ Fluorescente , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Macaca mulatta , Masculino , Neurocinina B/genética , Neurocinina B/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dedos de Zinco/genética
10.
Horm Mol Biol Clin Investig ; 24(2): 91-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26457789

RESUMO

BACKGROUND: Pro-nerve growth factor must be cleaved to generate mature NGF, which was suggested to be a factor involved in ovarian physiology and pathology. Extracellular proNGF can induce cell death in many tissues. Whether extracellular proNGF exists in the ovary and may play a role in the death of follicular cells or atresia was unknown. MATERIALS AND METHODS: Immunohistochemistry of human and rhesus monkey ovarian sections was performed. IVF-derived follicular fluid and human granulosa cells were studied by RT-PCR, qPCR, Western blotting, ATP- and caspase-assays. RESULTS AND CONCLUSION: Immunohistochemistry of ovarian sections identified proNGF in granulosa cells and Western blotting of human isolated granulosa cells confirmed the presence of proNGF. Ovarian granulosa cells thus produce proNGF. Recombinant human proNGF even at high concentrations did not affect the levels of ATP or the activity of caspase 3/7, indicating that in granulosa cells proNGF does not induce death. In contrast, mature NGF, which was detected previously in follicular fluid, may be a trophic molecule for granulosa cells with unexpected functions. We found that in contrast to proNGF, NGF increased the levels of the transcription factor early growth response 1 and of the enzyme choline acetyl-transferase. A mechanism for the generation of mature NGF from proNGF in the follicular fluid may be extracellular enzymatic cleavage. The enzyme MMP7 is known to cleave proNGF and was identified in follicular fluid and as a product of granulosa cells. Thus the generation of NGF in the ovarian follicle may depend on MMP7.


Assuntos
Células da Granulosa/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Fator de Crescimento Neural/metabolismo , Folículo Ovariano/metabolismo , Precursores de Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Células Cultivadas , Feminino , Líquido Folicular/enzimologia , Líquido Folicular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/citologia , Células da Granulosa/enzimologia , Humanos , Imuno-Histoquímica , Macaca mulatta , Fator de Crescimento Neural/química , Fator de Crescimento Neural/genética , Folículo Ovariano/citologia , Folículo Ovariano/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Front Neuroendocrinol ; 36: 90-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25171849

RESUMO

Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty.


Assuntos
Epigênese Genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/metabolismo , Puberdade/fisiologia , Maturidade Sexual/fisiologia , Animais , Feminino , Humanos
12.
Endocrinology ; 155(11): 4494-506, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211588

RESUMO

Polycystic ovarian syndrome (PCOS), the most common female endocrine disorder of unknown etiology, is characterized by reproductive abnormalities and associated metabolic conditions comprising insulin resistance, type 2 diabetes mellitus, and dyslipidemia. We previously reported that transgenic overexpression of nerve growth factor (NGF), a marker of sympathetic hyperactivity, directed to the ovary by the mouse 17α-hydroxylase/C17-20 lyase promoter (17NF mice), results in ovarian abnormalities similar to those seen in PCOS women. To investigate whether ovarian overproduction of NGF also induces common metabolic alterations of PCOS, we assessed glucose homeostasis by glucose tolerance test, plasma insulin levels, and body composition by dual-energy x-ray absorptiometry scan in young female 17NF mice and wild-type mice. 17NF mice exhibited increased body weight and alterations in body fat distribution with a greater accumulation of visceral fat compared with sc fat (P < .01). 17NF mice also displayed glucose intolerance (P < .01), decreased insulin-mediated glucose disposal (P < .01), and hyperinsulinemia (P < .05), which, similar to PCOS patients, occurred independently of body weight. Additionally, 17NF mice exhibited increased sympathetic outflow observed as increased interscapular brown adipose tissue temperature. This change was evident during the dark period (7 pm to 7 am) and occurred concomitant with increased interscapular brown adipose tissue uncoupling protein 1 expression. These findings suggest that overexpression of NGF in the ovary may suffice to cause both reproductive and metabolic alterations characteristic of PCOS and support the hypothesis that sympathetic hyperactivity may contribute to the development and/or progression of PCOS.


Assuntos
Infertilidade Feminina/genética , Fator de Crescimento Neural/genética , Ovário/metabolismo , Síndrome do Ovário Policístico/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Infertilidade Feminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/metabolismo , Ovário/patologia , Fenótipo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Reprodução/genética , Regulação para Cima/genética
13.
J Clin Endocrinol Metab ; 99(10): E2067-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033069

RESUMO

CONTEXT: Gordon Holmes syndrome (GHS) is characterized by cerebellar ataxia/atrophy and normosmic hypogonadotropic hypogonadism (nHH). The underlying pathophysiology of this combined neurodegeneration and nHH remains unknown. OBJECTIVE: We aimed to provide insight into the disease mechanism in GHS. METHODS: We studied a cohort of 6 multiplex families with GHS through autozygosity mapping and whole-exome sequencing. RESULTS: We identified 6 patients from 3 independent families carrying loss-of-function mutations in PNPLA6, which encodes neuropathy target esterase (NTE), a lysophospholipase that maintains intracellular phospholipid homeostasis by converting lysophosphatidylcholine to glycerophosphocholine. Wild-type PNPLA6, but not PNPLA6 bearing these mutations, rescued a well-established Drosophila neurodegenerative phenotype caused by the absence of sws, the fly ortholog of mammalian PNPLA6. Inhibition of NTE activity in the LßT2 gonadotrope cell line diminished LH response to GnRH by reducing GnRH-stimulated LH exocytosis, without affecting GnRH receptor signaling or LHß synthesis. CONCLUSION: These results suggest that NTE-dependent alteration of phospholipid homeostasis in GHS causes both neurodegeneration and impaired LH release from pituitary gonadotropes, leading to nHH.


Assuntos
Ataxia Cerebelar/genética , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Degeneração Neural/genética , Fosfolipases/genética , Puberdade Tardia/genética , Adolescente , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ataxia Cerebelar/metabolismo , Saúde da Família , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Homeostase/genética , Humanos , Hipogonadismo/metabolismo , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Linhagem , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Puberdade Tardia/metabolismo
14.
Endocrinology ; 155(8): 3098-111, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24877631

RESUMO

Neurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility. Oocytes lacking NTRK2 do not respond to gonadotropins with activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mediated signaling. Before puberty, oocytes only express a truncated NTRK2 form (NTRK2.T1), but at puberty full-length (NTRK2.FL) receptors are rapidly induced by the preovulatory gonadotropin surge. A cell line expressing both NTRK2.T1 and the kisspeptin receptor (KISS1R) responds to BDNF stimulation with activation of Ntrk2 expression only if kisspeptin is present. This suggests that BDNF and kisspeptin that are produced by granulosa cells (GCs) of periovulatory follicles act in concert to mediate the effect of gonadotropins on Ntrk2 expression in oocytes. In keeping with this finding, the oocytes of NTRK2-intact mice fail to respond to gonadotropins with increased Ntrk2 expression in the absence of KISS1R. Our results demonstrate that the preovulatory gonadotropin surge promotes oocyte survival at the onset of reproductive cyclicity by inducing oocyte expression of NTRK2.FL receptors that set in motion an AKT-mediated survival pathway. They also suggest that gonadotropins activate NTRK2.FL expression via a dual communication pathway involving BDNF and kisspeptin produced in GCs and their respective receptors NTRK2.T1 and KISS1R expressed in oocytes.


Assuntos
Glicoproteínas de Membrana/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Insuficiência Ovariana Primária/etiologia , Proteínas Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Gonadotropinas/fisiologia , Infertilidade Feminina/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Kisspeptina-1
15.
Endocrinology ; 155(8): 3088-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24885574

RESUMO

Premature ovarian failure (POF) affects 1% of women in reproductive age, but its etiology remains uncertain. Whereas kisspeptins, the products of Kiss1 that act via Kiss1r (aka, Gpr54), are known to operate at the hypothalamus to control GnRH/gonadotropin secretion, additional actions at other reproductive organs, including the ovary, have been proposed. Yet, their physiological relevance is still unclear. We present here a series of studies in Kiss1r haplo-insufficient and null mice suggesting a direct role of kisspeptin signaling in the ovary, the defect of which precipitates a state of primary POF. Kiss1r hypomorph mice displayed a premature decline in ovulatory rate, followed by progressive loss of antral follicles, oocyte loss, and a reduction in all categories of preantral follicles. These alterations were accompanied by reduced fertility. Because of this precocious ovarian ageing, mice more than 48 weeks of age showed atrophic ovaries, lacking growing follicles and corpora lutea. This phenomenon was associated with a drop in ovarian Kiss1r mRNA expression, but took place in the absence of a decrease in circulating gonadotropins. In fact, FSH levels increased in aged hypomorph animals, reflecting loss of follicular function. In turn, Kiss1r-null mice, which do not spontaneously ovulate and have arrested follicular development, failed to show normal ovulatory responses to standard gonadotropin priming and required GnRH prestimulation during 1 week in order to display gonadotropin-induced ovulation. Yet, the magnitude of such ovulatory responses was approximately half of that seen in control immature wild-type animals. Altogether, our data are the first to demonstrate that Kiss1r haplo-insufficiency induces a state of POF, which is not attributable to defective gonadotropin secretion. We also show that the failure of follicular development and ovulation linked to the absence of Kiss1r cannot be fully rescued by (even extended) gonadotropin replacement. These findings suggest a direct ovarian role of kisspeptin signaling, the perturbation of which may contribute to the pathogenesis of POF.


Assuntos
Kisspeptinas/metabolismo , Ovário/fisiologia , Ovulação , Insuficiência Ovariana Primária/etiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Gonadotropinas/metabolismo , Hipogonadismo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores de Kisspeptina-1
16.
Neuroendocrinology ; 99(2): 94-107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24686008

RESUMO

The importance of the Kiss1 gene in the control of reproductive development is well documented. However, much less is known about the transcriptional regulation of Kiss1 expression in the hypothalamus. Critical for these studies is an accurate identification of the site(s) where Kiss1 transcription is initiated. Employing 5'-RACE PCR, we detected a transcription start site (TSS1) used by the hypothalamus of rats, mice, nonhuman primates and humans to initiate Kiss1 transcription. In rodents, an exon 1 encoding 5'-untranslated sequences is followed by an alternatively spliced second exon, which encodes 5'-untranslated regions of two different lengths and contains the translation initiation codon (ATG). In nonhuman primates and humans, exon 2 is not alternatively spliced. Surprisingly, in rat mediobasal hypothalamus (MBH), but not preoptic area (POA), an additional TSS (TSS2) located upstream from TSS1 generates an exon 1 longer (377 bp) than the TSS1-derived exon 1 (98 bp). The content of TSS1-derived transcripts increased at puberty in the POA and MBH of female rats. It also increased in the MBH after ovariectomy, and this change was prevented by estrogen. In contrast, no such changes in TSS2-derived transcript abundance were detected. Promoter assays showed that the proximal TSS1 promoter is much more active than the putative TSS2 promoter, and that only the TSS1 promoter is regulated by estrogen. These differences appear to be related to the presence of a TATA box and binding sites for transcription factors activating transcription and interacting with estrogen receptor-α in the TSS1, but not TSS2, promoter.


Assuntos
Estrogênios/farmacologia , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , RNA Mensageiro/metabolismo , Maturidade Sexual , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos , Animais , Receptor alfa de Estrogênio/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Éxons/genética , Feminino , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ovariectomia , Regiões Promotoras Genéticas/genética , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/genética
17.
Horm Res Paediatr ; 80(4): 257-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24051510

RESUMO

BACKGROUND/AIM: TTF1 and EAP1 are transcription factors that modulate gonadotropin-releasing hormone expression. We investigated the contribution of TTF1 and EAP1 genes to central pubertal disorders. PATIENTS AND METHODS: 133 patients with central pubertal disorders were studied: 86 with central precocious puberty and 47 with normosmic isolated hypogonadotropic hypogonadism. The coding region of TTF1 and EAP1 were sequenced. Variations of polyglutamine and polyalanine repeats in EAP1 were analyzed by GeneScan software. Association of TTF1 and EAP1 to genes implicated in timing of puberty was investigated by meta-network framework GeneMANIA and Cytoscape software. RESULTS: Direct sequencing of the TTF1 did not reveal any mutation or polymorphisms. Four EAP1 synonymous variants were identified with similar frequencies among groups. The most common EAP1 5'-distal polyalanine genotype was the homozygous 12/12, but the genotype 12/9 was identified in 2 central precocious puberty sisters without functional alteration in EAP1 transcriptional activity. TTF1 and EAP1 were connected, via genetic networks, to genes implicated in the control of menarche. CONCLUSION: No TTF1 or EAP1 germline mutations were associated with central pubertal disorders. TTF1 and EAP1 may affect puberty by changing expression in response to other members of puberty-associated gene networks, or by differentially affecting the expression of gene components of these networks.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica/genética , Hormônio Liberador de Gonadotropina , Hipogonadismo , Securina , Criança , Análise Mutacional de DNA , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Masculino , Securina/biossíntese , Securina/genética , Fatores de Transcrição
18.
Nat Neurosci ; 16(3): 281-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354331

RESUMO

The timing of puberty is controlled by many genes. The elements coordinating this process have not, however, been identified. Here we show that an epigenetic mechanism of transcriptional repression times the initiation of female puberty in rats. We identify silencers of the Polycomb group (PcG) as principal contributors to this mechanism and show that PcG proteins repress Kiss1, a puberty-activating gene. Hypothalamic expression of two key PcG genes, Eed and Cbx7, decreased and methylation of their promoters increased before puberty. Inhibiting DNA methylation blocked both events and resulted in pubertal failure. The pubertal increase in Kiss1 expression was accompanied by EED loss from the Kiss1 promoter and enrichment of histone H3 modifications associated with gene activation. Preventing the eviction of EED from the Kiss1 promoter disrupted pulsatile gonadotropin-releasing hormone release, delayed puberty and compromised fecundity. Our results identify epigenetic silencing as a mechanism underlying the neuroendocrine control of female puberty.


Assuntos
Epigênese Genética , Hipotálamo/fisiologia , Maturidade Sexual/fisiologia , Animais , Metilação de DNA , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Histonas/genética , Histonas/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 7(4): e36424, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558465

RESUMO

SynCAM1 is an adhesion molecule involved in synaptic differentiation and organization. SynCAM1 is also expressed in astroglial cells where it mediates astrocyte-to astrocyte and glial-neuronal adhesive communication. In astrocytes, SynCAM1 is functionally linked to erbB4 receptors, which are involved in the control of both neuronal/glial development and mature neuronal and glial function. Here we report that mice carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes (termed GFAP-DNSynCAM1 mice) exhibit disrupted diurnal locomotor activity with enhanced and more frequent episodes of activity than control littermates during the day (when the animals are normally sleeping) accompanied by shorter periods of rest. GFAP-DNSynCAM1 mice also display high levels of basal activity in the dark period (the rodent's awake/active time) that are attenuated by the psychostimulant D,L-amphetamine, and reduced anxiety levels in response to both avoidable and unavoidable provoking stimuli. These results indicate that disruption of SynCAM1-dependent astroglial function results in behavioral abnormalities similar to those described in animals model of attention-deficit hyperactive disorder (ADHD), and suggest a hitherto unappreciated contribution of glial cells to the pathophysiology of this disorder.


Assuntos
Astrócitos/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Comportamento Animal , Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Transdução de Sinais , Anfetamina/farmacologia , Animais , Ansiedade/complicações , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Comunicação Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Imunoglobulinas/genética , Comportamento Impulsivo/complicações , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Mol Ther ; 19(12): 2152-62, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22031240

RESUMO

To date, a therapy for Huntington's disease (HD), a genetic, neurodegenerative disorder, remains elusive. HD is characterized by cell loss in the basal ganglia, with particular damage to the putamen, an area of the brain responsible for initiating and refining motor movements. Consequently, patients exhibit a hyperkinetic movement disorder. RNA interference (RNAi) offers therapeutic potential for this disorder by reducing the expression of HTT, the disease-causing gene. We have previously demonstrated that partial suppression of both wild-type and mutant HTT in the striatum prevents behavioral and neuropathological abnormalities in rodent models of HD. However, given the role of HTT in various cellular processes, it remains unknown whether a partial suppression of both alleles will be safe in mammals whose neurophysiology, basal ganglia anatomy, and behavioral repertoire more closely resembles that of a human. Here, we investigate whether a partial reduction of HTT in the normal non-human primate putamen is safe. We demonstrate that a 45% reduction of rhesus HTT expression in the mid- and caudal putamen does not induce motor deficits, neuronal degeneration, astrogliosis, or an immune response. Together, these data suggest that partial suppression of wild-type HTT expression is well tolerated in the primate putamen and further supports RNAi as a therapy for HD.


Assuntos
Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Comportamento Animal , Western Blotting , Dependovirus/genética , Avaliação Pré-Clínica de Medicamentos , Gliose/metabolismo , Gliose/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Imunidade Ativa , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , MicroRNAs/administração & dosagem , MicroRNAs/genética , Atividade Motora , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA