Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PPAR Res ; 2022: 5498115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465355

RESUMO

The incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1ß, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and ß/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and ß/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.

2.
Eur J Pharmacol ; 909: 174398, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332924

RESUMO

The pharmacological activation of cannabinoid type 2 receptors (CB2R) gained attention due to its ability to mitigate neuroinflammatory events without eliciting psychotropic actions, a limiting factor for the drugs targeting cannabinoid type 1 receptors (CB1R). Therefore, ligands activating CB2R are receiving enormous importance for therapeutic targeting in numerous neurological diseases including neurodegenerative, neuropsychiatric and neurodevelopmental disorders as well as traumatic injuries and neuropathic pain where neuroinflammation is a common accompaniment. Since the characterization of CB2R, many CB2R selective synthetic ligands have been developed with high selectivity and functional activity. Among numerous ligands, JWH133 has been found one of the compounds with high selectivity for CB2R. JWH133 has been reported to exhibit numerous pharmacological activities including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory. Recent studies have shown that JWH133 possesses potent neuroprotective properties in several neurological disorders, including neuropathic pain, anxiety, epilepsy, depression, alcoholism, psychosis, stroke, and neurodegeneration. Additionally, JWH133 showed to protect neurons from oxidative damage and inflammation, promote neuronal survival and neurogenesis, and serve as an immunomodulatory agent. The present review comprehensively examined neuropharmacological activities of JWH133 in neurological disorders including neurodegenerative, neurodevelopmental and neuropsychiatric using synoptic tables and elucidated pharmacological mechanisms based on reported observations. Considering the cumulative data, JWH133 appears to be a promising CB2R agonist molecule for further evaluation and it can be a prototype agent in drug discovery and development for a unique class of agents in neurotherapeutics. Further, regulatory toxicology and pharmacokinetic studies are required to determine safety and proceed for clinical evaluation.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Animais , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtornos Mentais/patologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/patologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo
3.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361780

RESUMO

Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


Assuntos
Autofagia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Catalase/genética , Catalase/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Nutrients ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650602

RESUMO

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1ß, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


Assuntos
Anti-Inflamatórios , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Fitoterapia , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Administração Oral , Animais , Antioxidantes/metabolismo , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Neutrófilos , Peroxidase/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Sesquiterpenos/isolamento & purificação
5.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503208

RESUMO

The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer's disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.


Assuntos
Transtorno Autístico/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Histamínicos H3/metabolismo , Animais , Antioxidantes/metabolismo , Transtorno Autístico/induzido quimicamente , Comportamento Animal , Cerebelo/metabolismo , Feminino , Glutationa/metabolismo , Cinética , Peroxidação de Lipídeos , Masculino , Exposição Materna , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Gravidez , Prenhez , Ácido Valproico
6.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235506

RESUMO

Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.


Assuntos
Epilepsia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Excitação Neurológica/efeitos dos fármacos , Transtornos da Memória , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Ratos , Ratos Wistar
7.
Chem Biol Interact ; 312: 108775, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369746

RESUMO

Postnatal exposure to valproic acid (VPA) in rodents induces autism-like neurobehavioral defects which are comparable to the motor and cognitive deficits observed in humans with autism spectrum disorder (ASD). Histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in several cognitive disorders such as Alzheimer's disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with ASD. Therefore, the present study aimed at evaluating effect of the novel dual-active ligand E100 with high H3R antagonist affinity and balanced AChE inhibition on autistic-like repetitive behavior, anxiety parameters, locomotor activity, and neuroinflammation in a mouse model of VPA-induced ASD in C57BL/6 mice. E100 (5, 10, and 15 mg/kg) dose-dependently and significantly ameliorated repetitive and compulsive behaviors by reducing the increased percentages of nestlets shredded (all P < 0.05). Moreover, pretreatment with E100 (10 and 15 mg/kg) attenuated disturbed anxiety levels (P < 0.05) but failed to restore the hyperactivity observed in the open field test. Furthermore, pretreatment with E100 (10 mg/kg) the increased microglial activation, proinflammatory cytokines and expression of NF-κB, iNOS, and COX-2 in the cerebellum as well as the hippocampus (all P < 0.05). These results demonstrate the ameliorative effects of E100 on repetitive compulsive behaviors in a mouse model of ASD. To our knowledge, this is the first in vivo demonstration of the effectiveness of a potent dual-active H3R antagonist and AChE inhibitor against autistic-like repetitive compulsive behaviors and neuroinflammation, and provides evidence for the role of such compounds in treating ASD.


Assuntos
Transtorno do Espectro Autista/patologia , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição RelA/metabolismo , Ácido Valproico/toxicidade
8.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185705

RESUMO

Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.


Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Lycopodium/química , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Metaloproteinases da Matriz/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Wistar , Rotenona , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo
9.
Front Pharmacol ; 9: 892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233358

RESUMO

Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.

10.
Front Neurosci ; 12: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483860

RESUMO

The role of Histamine H3 receptors (H3Rs) in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD) is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP) and novel object recognition (NOR) task in adult male rats, using donepezil (DOZ) as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p.) significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7). The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p.) was reversed when rats were co-injected with the H3R agonist R-(α)-methylhistamine (RAMH, 10 mg/kg, i.p.) (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6). In the NOR paradigm, DL77 (5 mg/kg, i.p.) counteracted long-term memory (LTM) deficits induced with MK801 (P < 0.05, n = 6-8), and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6-8), and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p.) (p = 0.877, n = 6, as compared to the (MK801)-amnesic group). However, DL77 (5 mg/kg, i.p.) did not alter short-term memory (STM) impairment in NOR test (p = 0.772, n = 6-8, as compared to (MK801)-amnesic group). Moreover, DL77 (5 mg/kg) failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM) (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6), demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating neurotransmitters related to neurodegenerative disorders, e.g., AD.

11.
Front Pharmacol ; 8: 656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983249

RESUMO

Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae. A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required to encourage the clinical development of thymoquinone.

12.
Front Pharmacol ; 8: 380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694777

RESUMO

Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA