Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 115(3): 658-668, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239623

RESUMO

AIMS: Recent accumulating evidence suggests that sterile inflammation plays a crucial role in the progression of various cardiovascular diseases. However, its contribution to right ventricular (RV) dysfunction remains unknown. The aim of this study was to elucidate whether toll-like receptor 9 (TLR9)-NF-κB-mediated sterile inflammation plays a critical role in the pathogenesis of RV dysfunction. METHODS AND RESULTS: We performed main pulmonary artery banding (PAB) in rats to induce RV pressure overload and dysfunction. On Day 14 after PAB, the pressure overload impaired RV function as indicated by increased RV end-diastolic pressure concomitant with macrophage infiltration and fibrosis, as well as maximal activation of NF-κB and TLR9. Short-term administration (days 14-16 after PAB) of a specific TLR9 inhibitor, E6446, or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) significantly attenuated NF-κB activation. Furthermore, long-term administration of E6446 (treatment: days 14-28) or PDTC (prevention: days -1 to 28; treatment: days 14 to 28) improved RV dysfunction associated with mitigated macrophage infiltration and fibrosis in right ventricle and decreased serum brain natriuretic peptide levels. CONCLUSION: Inhibition of TLR9-NF-κB pathway-mediated sterile inflammation improved PAB-induced RV dysfunction in rats. This pathway plays a major role in the progression of pressure overload-induced RV dysfunction and is potentially a novel therapeutic target for the disorder.


Assuntos
Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/metabolismo , NF-kappa B/antagonistas & inibidores , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia , Receptor Toll-Like 9/antagonistas & inibidores , Disfunção Ventricular Direita/tratamento farmacológico , Função Ventricular Direita , Pressão Ventricular , Animais , Fibrose , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
2.
Cardiovasc Res ; 111(1): 16-25, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037259

RESUMO

AIMS: An important pathogenic mechanism in the development of idiopathic pulmonary arterial hypertension is hypothesized to be a cancer-like cellular proliferation independent of haemodynamics. However, because the vascular lesions are inseparably coupled with haemodynamic stress, the fate of the lesions is unknown when haemodynamic stress is eliminated. METHODS AND RESULTS: We applied left pulmonary artery banding to a rat model with advanced pulmonary hypertension to investigate the effects of decreased haemodynamic stress on occlusive vascular lesions. Rats were given an injection of the VEGF blocker Sugen5416 and exposed to 3 weeks of hypoxia plus an additional 7 weeks of normoxia (total 10 weeks) (SU/Hx/Nx rats). The banding surgery to reduce haemodynamic stress to the left lung was done at 1 week prior to (preventive) or 5 weeks after (reversal) the SU5416 injection. All SU/Hx/Nx-exposed rats developed severe pulmonary hypertension and right ventricular hypertrophy. Histological analyses showed that the non-banded right lungs developed occlusive lesions including plexiform lesions with marked perivascular cell accumulation. In contrast, banding the left pulmonary artery not only prevented the development of but also reversed the established occlusive lesions as well as perivascular inflammation in the left lungs. CONCLUSION: Our results indicate that haemodynamic stress is prerequisite to the development and progression of occlusive neointimal lesions in this rat model of severe pulmonary hypertension. We conclude that perivascular inflammation and occlusive neointimal arteriopathy are driven by haemodynamic stress.


Assuntos
Arteriopatias Oclusivas/fisiopatologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Hemodinâmica , Inflamação/fisiopatologia , Neointima , Artéria Pulmonar/fisiopatologia , Remodelação Vascular , Inibidores da Angiogênese , Animais , Arteriopatias Oclusivas/etiologia , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/patologia , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/etiologia , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Hipóxia/complicações , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Ligadura , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/cirurgia , Circulação Pulmonar , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Fator de Transcrição RelA/metabolismo
3.
Mol Pharm ; 11(12): 4374-84, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25333706

RESUMO

This study sought to develop a liposomal delivery system of fasudil--an investigational drug for the treatment of pulmonary arterial hypertension (PAH)--that will preferentially accumulate in the PAH lungs. Liposomal fasudil was prepared by film-hydration method, and the drug was encapsulated by active loading. The liposome surface was coated with a targeting moiety, CARSKNKDC, a cyclic peptide; the liposomes were characterized for size, polydispersity index, zeta potential, and storage and nebulization stability. The in vitro drug release profiles and uptake by TGF-ß activated pulmonary arterial smooth muscle cells (PASMC) and alveolar macrophages were evaluated. The pharmacokinetics were monitored in male Sprague-Dawley rats, and the pulmonary hemodynamics were studied in acute and chronic PAH rats. The size, polydispersity index (PDI), and zeta potential of the liposomes were 206-216 nm, 0.058-0.084, and -20-42.7 mV, respectively. The formulations showed minimal changes in structural integrity when nebulized with a commercial microsprayer. The optimized formulation was stable for >4 weeks when stored at 4 °C. Fasudil was released in a continuous fashion over 120 h with a cumulative release of 76%. Peptide-linked liposomes were taken up at a higher degree by TGF-ß activated PASMCs; but alveolar macrophages could not engulf peptide-coated liposomes. The formulations did not injure the lungs; the half-life of liposomal fasudil was 34-fold higher than that of plain fasudil after intravenous administration. Peptide-linked liposomal fasudil, as opposed to plain liposomes, reduced the mean pulmonary arterial pressure by 35-40%, without influencing the mean systemic arterial pressure. This study establishes that CAR-conjugated inhalable liposomal fasudil offers favorable pharmacokinetics and produces pulmonary vasculature specific dilatation.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Hipertensão Pulmonar/tratamento farmacológico , Lipossomos/química , Peptídeos/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Vasodilatadores/química , Vasodilatadores/uso terapêutico
4.
J Cardiovasc Pharmacol ; 64(5): 473-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25084082

RESUMO

The efficacy of endothelin (ET) receptor antagonist bosentan in patients with severe pulmonary arterial hypertension (PAH) remains limited, partly because its higher doses for potential blockade of ET receptors have never been tested due to liver dysfunction. We hypothesized that rigorous blockade of ET receptors using the novel dual ET receptor antagonist macitentan would be effective in treating severe PAH without major side effects in a preclinical model appropriately representing the human disorder. In normal rats, 30 mg·kg·d of macitentan completely abolished big ET-1-induced increases in right ventricle (RV) systolic pressure. Adult male rats were injected with SU5416, a vascular endothelial growth factor blocker, and exposed to hypoxia for 3 weeks and then to normoxia for an additional 5 weeks (total 8 weeks). In intrapulmonary arterial rings isolated from rats with severe PAH, macitentan concentration dependently inhibited ET-1-induced contraction. Long-term treatment with macitentan (30 mg·kg·d, from week 3 to 8) reversed the high RV systolic pressure with preserved cardiac output. Development of RV hypertrophy, luminal occlusive lesions and medial wall thickening were also significantly improved without increasing serum levels of liver enzymes by macitentan. In conclusion, efficacious blockade of ET receptors with macitentan would reverse severe PAH without major adverse effects.


Assuntos
Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A/administração & dosagem , Antagonistas do Receptor de Endotelina A/toxicidade , Antagonistas do Receptor de Endotelina B/administração & dosagem , Antagonistas do Receptor de Endotelina B/toxicidade , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/tratamento farmacológico , Indóis/farmacologia , Masculino , Pirimidinas/administração & dosagem , Pirimidinas/toxicidade , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Sulfonamidas/administração & dosagem , Sulfonamidas/toxicidade , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
Am J Pathol ; 184(2): 369-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401613

RESUMO

A major limitation in the pharmacological treatment of pulmonary arterial hypertension (PAH) is the lack of pulmonary vascular selectivity. Recent studies have identified a tissue-penetrating homing peptide, CARSKNKDC (CAR), which specifically homes to hypertensive pulmonary arteries but not to normal pulmonary vessels or other tissues. Some tissue-penetrating vascular homing peptides have a unique ability to facilitate transport of co-administered drugs into the targeted cells/tissues without requiring physical conjugation of the drug to the peptide (bystander effect). We tested the hypothesis that co-administered CAR would selectively enhance the pulmonary vascular effects of i.v. vasodilators in Sugen5416/hypoxia/normoxia-exposed PAH rats. Systemically administered CAR was predominantly detected in cells of remodeled pulmonary arteries. Intravenously co-administered CAR enhanced pulmonary, but not systemic, effects of the vasodilators, fasudil and imatinib, in PAH rats. CAR increased lung tissue imatinib concentration in isolated PAH lungs without increasing pulmonary vascular permeability. Sublingual CAR was also effective in selectively enhancing the pulmonary vasodilation by imatinib and sildenafil. Our results suggest a new paradigm in the treatment of PAH, using an i.v./sublingual tissue-penetrating homing peptide to selectively augment pulmonary vascular effects of nonselective drugs without the potentially problematic conjugation process. CAR may be particularly useful as an add-on therapy to selectively enhance the pulmonary vascular efficacy of any ongoing drug treatment in patients with PAH.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hipertensão Pulmonar/tratamento farmacológico , Peptídeos/química , Vasodilatadores/uso terapêutico , Administração Sublingual , Sequência de Aminoácidos , Animais , Arteriopatias Oclusivas/tratamento farmacológico , Arteriopatias Oclusivas/patologia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Hipertensão Pulmonar Primária Familiar , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Mesilato de Imatinib , Infusões Intravenosas , Injeções Intravenosas , Masculino , Dados de Sequência Molecular , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
6.
Am J Physiol Heart Circ Physiol ; 306(2): H243-50, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240870

RESUMO

We have investigated the temporal relationship between the hemodynamic and histological/morphological progression in a rat model of pulmonary arterial hypertension that develops pulmonary arterial lesions morphologically indistinguishable from those in human pulmonary arterial hypertension. Adult male rats were injected with Sugen5416 and exposed to hypoxia for 3 wk followed by a return to normoxia for various additional weeks. At 1, 3, 5, 8, and 13 wk after the Sugen5416 injection, hemodynamic and histological examinations were performed. Right ventricular systolic pressure reached its maximum 5 wk after Sugen5416 injection and plateaued thereafter. Cardiac index decreased at the 3∼5-wk time point, and tended to further decline at later time points. Reflecting these changes, calculated total pulmonary resistance showed a pattern of progressive worsening. Acute intravenous fasudil markedly reduced the elevated pressure and resistance at all time points tested. The percentage of severely occluded small pulmonary arteries showed a similar pattern of progression to that of right ventricular systolic pressure. These small vessels were occluded predominantly with nonplexiform-type neointimal formation except for the 13-wk time point. There was no severe occlusion in larger arteries until the 13-wk time point, when significant numbers of vessels were occluded with plexiform-type neointima. The Sugen5416/hypoxia/normoxia-exposed rat shows a pattern of chronic hemodynamic progression similar to that observed in pulmonary arterial hypertension patients. In addition to vasoconstriction, nonplexiform-type neointimal occlusion of small arteries appears to contribute significantly to the early phase of pulmonary arterial hypertension development, and plexiform-type larger vessel occlusion may play a role in the late deterioration.


Assuntos
Hemodinâmica , Hipertensão Pulmonar/fisiopatologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Indóis/toxicidade , Masculino , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis/toxicidade , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia
7.
Am J Pathol ; 183(6): 1779-1788, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113457

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure with lumen-occluding neointimal and plexiform lesions. Activation of store-operated calcium entry channels promotes contraction and proliferation of lung vascular cells. TRPC4 is a ubiquitously expressed store-operated calcium entry channel, but its role in PAH is unknown. We tested the hypothesis that TRPC4 promotes pulmonary arterial constriction and occlusive remodeling, leading to right ventricular failure in severe PAH. Severe PAH was induced in Sprague-Dawley rats and in wild-type and TRPC4-knockout Fischer 344 rats by a single subcutaneous injection of SU5416 [SU (semaxanib)], followed by hypoxia exposure (Hx; 10% O2) for 3 weeks and then a return to normoxia (Nx; 21% O2) for 3 to 10 additional weeks (SU/Hx/Nx). Although rats of both backgrounds exhibited indistinguishable pulmonary hypertensive responses to SU/Hx/Nx, Fischer 344 rats died within 6 to 8 weeks. Normoxic and hypertensive TRPC4-knockout rats recorded hemodynamic parameters similar to those of their wild-type littermates. However, TRPC4 inactivation conferred a striking survival benefit, due in part to preservation of cardiac output. Histological grading of vascular lesions revealed a reduction in the density of severely occluded small pulmonary arteries and in the number of plexiform lesions in TRPC4-knockout rats. TRPC4 inactivation therefore provides a survival benefit in severe PAH, associated with a decrease in the magnitude of occlusive remodeling.


Assuntos
Hipertensão Pulmonar , Canais de Cátion TRPC , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/farmacologia , Animais , Animais Geneticamente Modificados , Débito Cardíaco/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/terapia , Indóis/efeitos adversos , Indóis/farmacologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pirróis/efeitos adversos , Pirróis/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Fatores de Tempo
8.
Pulm Circ ; 3(2): 294-314, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24015330

RESUMO

Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this "estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data.

9.
Hypertension ; 61(4): 921-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381789

RESUMO

Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates proinflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells results in increased migration and proliferation. Pulmonary artery smooth muscle cells isolated from NEP(-/-) mice exhibited enhanced migration and proliferation in response to serum and platelet-derived growth factor, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by small interfering RNA in NEP(+/+) cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN, resulting in activation of the platelet-derived growth factor receptor (PDGFR). Knockdown of Src kinase with small interfering RNA or inhibition with PP2, a src kinase inhibitor, decreased PDGFR(Y751) phosphorylation and attenuated migration and proliferation in NEP(-/-) smooth muscle cells. NEP substrates, endothelin 1 or fibroblast growth factor 2, increased activation of Src and PDGFR in NEP(+/+) cells, which was decreased by an endothelin A receptor antagonist, neutralizing antibody to fibroblast growth factor 2 and Src inhibitor. Similar to the observations in pulmonary artery smooth muscle cells, levels of phosphorylated PDGFR, Src, and PTEN were elevated in NEP(-/-) lungs. Endothelin A receptor antagonist also attenuated the enhanced responses in NEP(-/-) pulmonary artery smooth muscle cells and lungs. Taken together our results suggest a novel mechanism for the regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN, or PDGFR, may be of therapeutic benefit in pulmonary vascular disease.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Neprilisina/farmacologia , Artéria Pulmonar/fisiopatologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Fenótipo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais
10.
PLoS One ; 7(6): e39009, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720015

RESUMO

BACKGROUND: Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. METHODS: We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. RESULTS: RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. CONCLUSION: Our novel findings suggest that transcription of RFC40 is suppressed in the normal adult cardiac myocytes and its insufficient re-expression may be responsible for causing chromosomal missegregation/aneuploidy and in cardiac myocytes during right ventricular hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Cromossomos , Regulação para Baixo , Miocárdio/metabolismo , Proteína de Replicação C/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/patologia , Células Cultivadas , DNA Polimerase III/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Miocárdio/citologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
11.
BMC Immunol ; 12: 67, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22171643

RESUMO

BACKGROUND: Pulmonary hypertension (PH) refers to a spectrum of diseases with elevated pulmonary artery pressure. Pulmonary arterial hypertension (PAH) is a disease category that clinically presents with severe PH and that is histopathologically characterized by the occlusion of pulmonary arterioles, medial muscular hypertrophy, and/or intimal fibrosis. PAH occurs with a secondary as well as a primary onset. Secondary PAH is known to be complicated with immunological disorders. The aim of the present study is to histopathologically and genetically characterize a new animal model of PAH and clarify the role of OX40 ligand in the pathogenesis of PAH. RESULTS: Spontaneous onset of PAH was stably identified in mice with immune abnormality because of overexpression of the tumor necrosis factor (TNF) family molecule OX40 ligand (OX40L). Histopathological and physical examinations revealed the onset of PAH-like disorders in the C57BL/6 (B6) strain of OX40L transgenic mice (B6.TgL). Comparative analysis performed using different strains of transgenic mice showed that this onset depends on the presence of OX40L in the B6 genetic background. Genetic analyses demonstrated a susceptibility locus of a B6 allele to this onset on chromosome 5. Immunological analyses revealed that the excessive OX40 signals in TgL mice attenuates expansion of regulatory T cells the B6 genetic background, suggesting an impact of the B6 genetic background on the differentiation of regulatory T cells. CONCLUSION: Present findings suggest a role for the OX40L-derived immune response and epistatic genetic effect in immune-mediated pathogenesis of PAH.


Assuntos
Epistasia Genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/imunologia , Ligante OX40/genética , Transdução de Sinais , Animais , Pressão Sanguínea , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Feminino , Expressão Gênica , Predisposição Genética para Doença , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/patologia , Memória Imunológica , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante OX40/metabolismo , Fenótipo , Locos de Características Quantitativas
12.
Am J Pathol ; 178(6): 2489-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21549345

RESUMO

Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary vasculature associated with elevated pulmonary vascular resistance. Despite recent advances in the treatment of PAH, with eight approved clinical therapies and additional therapies undergoing clinical trials, PAH remains a serious life-threatening condition. The lack of pulmonary vascular selectivity and associated systemic adverse effects of these therapies remain the main obstacles to successful treatment. Peptide-mediated drug delivery that specifically targets the vasculature of PAH lungs may offer a solution to the lack of drug selectivity. Herein, we show highly selective targeting of rat PAH lesions by a novel cyclic peptide, CARSKNKDC (CAR). Intravenous administration of CAR peptide resulted in intense accumulation of the peptide in monocrotaline-induced and SU5416/hypoxia-induced hypertensive lungs but not in healthy lungs or other organs of PAH rats. CAR homed to all layers of remodeled pulmonary arteries, ie, endothelium, neointima, medial smooth muscle, and adventitia, in the hypertensive lungs. CAR also homed to capillary vessels and accumulated in the interstitial space of the PAH lungs, manifesting its extravasation activity. These results demonstrated the remarkable ability of CAR to selectively target PAH lung vasculature and effectively penetrate and spread throughout the diseased lung tissue. These results suggest the clinical utility of CAR in the targeted delivery of therapeutic compounds and imaging probes to PAH lungs.


Assuntos
Sistemas de Liberação de Medicamentos , Hipertensão Pulmonar/patologia , Peptídeos/farmacologia , Artéria Pulmonar/patologia , Sequência de Aminoácidos , Animais , Humanos , Hipertensão Pulmonar/complicações , Hipóxia/complicações , Indóis/farmacologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Dados de Sequência Molecular , Monocrotalina , Peptídeos/administração & dosagem , Peptídeos/química , Artéria Pulmonar/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Tempo
13.
Circulation ; 121(25): 2747-54, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547927

RESUMO

BACKGROUND: The plexiform lesion is the hallmark of severe pulmonary arterial hypertension. However, its genesis and hemodynamic effects are largely unknown because of the limited availability of lung tissue samples from patients with pulmonary arterial hypertension and the lack of appropriate animal models. This study investigated whether rats with severe progressive pulmonary hypertension developed plexiform lesions. METHODS AND RESULTS: After a single subcutaneous injection of the vascular endothelial growth factor receptor blocker Sugen 5416, rats were exposed to hypoxia for 3 weeks. They were then returned to normoxia for an additional 10 to 11 weeks. Hemodynamic and histological examinations were performed at 13 to 14 weeks after the Sugen 5416 injection. All rats developed pulmonary hypertension (right ventricular systolic pressure approximately 100 mm Hg) and severe pulmonary arteriopathy, including concentric neointimal and complex plexiform-like lesions. There were 2 patterns of complex lesion formation: a lesion forming within the vessel lumen (stalk-like) and another that projected outside the vessel (aneurysm-like). Immunohistochemical analyses showed that these structures had cellular and molecular features closely resembling human plexiform lesions. CONCLUSIONS: Severe, sustained pulmonary hypertension in a very late stage of the Sugen 5416/hypoxia/normoxia-exposed rat is accompanied by the formation of lesions that are indistinguishable from the pulmonary arteriopathy of human pulmonary arterial hypertension. This unique model provides a new and rigorous approach for investigating the genesis, hemodynamic effects, and reversibility of plexiform and other occlusive lesions in pulmonary arterial hypertension.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/patologia , Animais , Artérias/patologia , Hipertensão Pulmonar/etiologia , Hipóxia , Pulmão/irrigação sanguínea , Ratos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
14.
Am J Pathol ; 174(3): 782-96, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234135

RESUMO

Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.


Assuntos
Hipertensão Pulmonar/patologia , Hipóxia/genética , Camundongos Knockout , Neprilisina/deficiência , Artéria Pulmonar/patologia , Circulação Pulmonar/fisiologia , Animais , Divisão Celular , Doença Crônica , Primers do DNA , Predisposição Genética para Doença , Genótipo , Hemodinâmica , Hipertensão Pulmonar/genética , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Neprilisina/genética
15.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L71-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469113

RESUMO

RhoA/Rho kinase (ROCK) signaling plays a key role in the pathogenesis of experimental pulmonary hypertension (PH). Dehydroepiandrosterone (DHEA), a naturally occurring steroid hormone, effectively inhibits chronic hypoxic PH, but the responsible mechanisms are unclear. This study tested whether DHEA was also effective in treating monocrotaline (MCT)-induced PH in left pneumonectomized rats and whether inhibition of RhoA/ROCK signaling was involved in the protective effect of DHEA. Three weeks after MCT injection, pneumonectomized rats developed PH with severe vascular remodeling, including occlusive neointimal lesions in pulmonary arterioles. In lungs from these animals, we detected cleaved (constitutively active) ROCK I as well as increases in activities of RhoA and ROCK and increases in ROCK II protein expression. Chronic DHEA treatment (1%, by food for 3 wk) markedly inhibited the MCT-induced PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 33+/-5 and 16+/-1 mmHg, respectively) and severe pulmonary vascular remodeling in pneumonectomized rats. The MCT-induced changes in RhoA/ROCK-related protein expression were nearly normalized by DHEA. A 3-wk DHEA treatment (1%) started 3 wk after MCT injection completely inhibited the progression of PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 47+/-3 and 30+/-3 mmHg, respectively), and this treatment also resulted in 100% survival in contrast to 30% in DHEA-untreated rats. These results suggest that inhibition of RhoA/ROCK signaling, including the cleavage and constitutive activation of ROCK I, is an important component of the impressive protection of DHEA against MCT-induced PH in pneumonectomized rats.


Assuntos
Adjuvantes Imunológicos/farmacologia , Desidroepiandrosterona/farmacologia , Hipertensão Pulmonar/enzimologia , Monocrotalina/toxicidade , Quinases Associadas a rho/biossíntese , Proteína rhoA de Ligação ao GTP/biossíntese , Animais , Pressão Sanguínea/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Pneumonectomia , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Fatores de Tempo
16.
Cardiovasc Res ; 74(3): 377-87, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17346686

RESUMO

OBJECTIVE: It has been reported that dehydroepiandrosterone is a pulmonary vasodilator and inhibits chronic hypoxia-induced pulmonary hypertension. Additionally, dehydroepiandrosterone has been shown to improve systemic vascular endothelial function. Thus, we hypothesized that chronic treatment with dehydroepiandrosterone would attenuate hypoxic pulmonary hypertension by enhancing pulmonary artery endothelial function. METHODS AND RESULTS: Rats were randomly assigned to five groups. Three groups received food containing 0, 0.3, or 1% dehydroepiandrosterone during a 3-wk-exposure to simulated high altitude (HA). The other 2 groups were kept at Denver's low altitude (LA) and received food containing 0 or 1% dehydroepiandrosterone. Dehydroepiandrosterone dose-dependently inhibited hypoxic pulmonary hypertension (mean pulmonary artery pressures after treatment with 0, 0.3, and 1% dehydroepiandrosterone=45+/-5, 33+/-2*, and 25+/-1*# mmHg, respectively. *P<0.05 vs. 0% and # vs. 0.3%). Dehydroepiandrosterone (1%, 3 wks) treatment started after rats had been exposed to 3-wk hypoxia also effectively reversed established hypoxic pulmonary hypertension. Pulmonary artery rings isolated from both LA and HA rats treated with 1% dehydroepiandrosterone showed enhanced relaxations to acetylcholine and sodium nitroprusside, but not to 8-bromo-cGMP. In the pulmonary artery tissue from dehydroepiandrosterone-treated LA and HA rats, soluble guanylate cyclase, but not endothelial nitric oxide synthase, protein levels were increased. CONCLUSION: These results indicate that the protective effect of dehydroepiandrosterone against hypoxic pulmonary hypertension may involve upregulation of pulmonary artery soluble guanylate cyclase protein expression and augmented pulmonary artery vasodilator responsiveness to nitric oxide.


Assuntos
Desidroepiandrosterona/uso terapêutico , Guanilato Ciclase/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação para Cima , Acetilcolina/farmacologia , Animais , Western Blotting , GMP Cíclico/farmacologia , Desidroepiandrosterona/metabolismo , Sulfato de Desidroepiandrosterona/sangue , Sulfato de Desidroepiandrosterona/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Estradiol/sangue , Guanilato Ciclase/análise , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Técnicas In Vitro , Pulmão/enzimologia , Masculino , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/análise , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Nitroprussiato/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/análise , Guanilil Ciclase Solúvel , Testosterona/sangue , Vasodilatadores/farmacologia
17.
Pulm Pharmacol Ther ; 19(4): 303-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16203165

RESUMO

We have previously shown that pentose phosphate pathway (PPP) inhibitors, 6-aminonicotinamide (6-AN) and epiandrosterone (EPI), markedly reduce hypoxic pulmonary vasoconstriction (HPV). Although it has been suggested that changes in the NADPH/NADP+ ratio and redox status are involved in the mechanism of HPV, the role of PPP-derived NADPH in this phenomenon is not known. The aim of this study, therefore, was to investigate the role of PPP-derived NADPH in HPV using isolated rat pulmonary arteries (PA) and perfused rat lungs. The NADPH/NADP+ ratio and NADPH levels in PA and lungs exposed to hypoxia increased 2-fold and 7-fold, respectively, compared to time-matched normoxic controls. Both hypoxia-induced increases in lung NADPH levels and lung perfusion pressure were inhibited by 6-AN (500 microM) or EPI (300 microM). The chemical inhibitors of PPP and hypoxia similarly decreased lung tissue NOx levels by approximately 50%. In contrast, hypoxia increased the lung soluble guanylate cyclase (sGC) activity (from 22.9+/-6.3 to 57.1+/-7.6 pmol/min/g), which was prevented by PPP inhibitors. ODQ, a sGC inhibitor, potentiated HPV. These results suggest that while PPP-derived NADPH may play a significant role in HPV, it may also moderate the magnitude of HPV through activation of the NO-sGC-cGMP vasodilation pathway.


Assuntos
Hipóxia/fisiopatologia , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , 6-Aminonicotinamida/farmacologia , Androsterona/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Hipóxia/metabolismo , Técnicas In Vitro , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Nitratos/metabolismo , Nitritos/metabolismo , Oxidiazóis/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Perfusão , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
18.
J Appl Physiol (1985) ; 100(3): 996-1002, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16322374

RESUMO

The fawn-hooded rat (FHR) develops severe pulmonary hypertension (PH) when raised for the first 3-4 wk of life in the mild hypoxia of Denver's altitude (5,280 ft.). The PH is associated with sustained pulmonary vasoconstriction and pulmonary artery remodeling. Furthermore, lung alveolarization and vascularization are reduced in the Denver FHR. We have recently shown that RhoA/Rho kinase signaling is involved in both vasoconstriction and vascular remodeling in animal models of hypoxic PH. In this study, we investigated the role of RhoA/Rho kinase signaling in the PH of Denver FHR. In alpha-toxin permeabilized pulmonary arteries from Denver FHR, the contractile sensitivity to Ca2+ was increased compared with those from sea-level FHR. RhoA activity and Rho kinase I protein expression in pulmonary arteries of Denver FHR (10-wk-old) were higher than in those of sea-level FHR. Acute inhalation of the Rho kinase inhibitor fasudil selectively reduced the elevated pulmonary arterial pressure in Denver FHR in vivo. Chronic fasudil treatment (30 mg.kg-1.day-1, from birth to 10 wk old) markedly reduced the development of PH and improved lung alveolarization and vascularization in Denver FHR. These results suggest that Rho kinase-mediated sustained vasoconstriction, through increased Ca2+ sensitivity, plays an important role in the established PH and that RhoA/Rho kinase signaling contributes significantly to the development of PH and lung dysplasia in mild hypoxia-exposed FHR.


Assuntos
Hipertensão Pulmonar/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Altitude , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Cálcio/farmacologia , Cálcio/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertrofia Ventricular Direita/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Alvéolos Pulmonares/patologia , Artéria Pulmonar/química , Artéria Pulmonar/patologia , Ratos , Ratos Endogâmicos , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/genética
19.
Adv Exp Med Biol ; 543: 127-37, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14713118

RESUMO

Intracellular signaling via the small GTP-binding protein RhoA and its downstream effector Rho-kinase plays a role in regulating diverse cellular functions, including cell contraction, migration, gene expression, proliferation, and differentiation. Rho/Rho-kinase signaling has an obligatory role in embryonic cardiac development, and low-level chemical activation of Rho promotes branching morphogenesis in fetal lung explants. Gebb has found that hypoxia markedly augments branching morphogenesis in fetal rat lung explants, and our preliminary results suggest this is associated with activation of RhoA. Whereas hypoxia-induced activation of Rho/Rho-kinase may promote fetal lung development, other evidence indicates it has adverse effects in the lungs of neonates and adults. When exposed at birth to the mild hypoxia of Denver's altitude (5,280 ft), the neonatal fawn-hooded rat (FHR) develops severe pulmonary hypertension (PH) associated with impaired lung alveolarization and vascularization. We have observed that administration via the drinking water of the Rho-kinase inhibitor fasudil to the nursing, Denver FHR mother for the first 2 to 3 weeks, and then directly to the Denver FHR pups for the next 7 to 8 weeks, ameliorates the lung dysplasia and PH. The adult Sprague-Dawley rat develops PH when exposed for 3 to 4 wk to a simulated altitude of 17,000 ft. We have found that this hypoxic PH is associated with activation of pulmonary artery Rho/Rho-kinase and is almost completely reversed by acute intravenous administration of the Rho-kinase inhibitor Y-27632. In addition, chronic in vivo treatment with Y-27632 reduces development of the hypoxic PH. In summary, hypoxic activation of Rho/Rho-kinase signaling may be important for fetal lung morphogenesis, but continued activation of this pathway in the neonate impairs postnatal lung development and re-activation in the adult contributes to development of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipóxia/metabolismo , Pulmão/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Altitude , Animais , Animais Recém-Nascidos , Feto/metabolismo , Hipóxia/complicações , Hipóxia/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/embriologia , Pulmão/metabolismo , Ratos , Transdução de Sinais , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA