Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 111(10): 2745-2757, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839866

RESUMO

In this study, we conducted a collaborative study on the classification between silicone oil droplets and protein particles detected using the flow imaging (FI) method toward proposing a standardized classifier/model. We compared four approaches, including a classification filter composed of particle characteristic parameters, principal component analysis, decision tree, and convolutional neural network in the performance of the developed classifier/model. Finally, the points to be considered were summarized for measurement using the FI method, and for establishing the classifier/model using machine learning to differentiate silicone oil droplets and protein particles.


Assuntos
Óleos de Silicone , Silicones , Tamanho da Partícula , Proteínas
2.
Nucleosides Nucleotides Nucleic Acids ; 27(3): 292-308, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18260012

RESUMO

Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258-259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 x 10(6) variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use pi-pi stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 x 10(6) M(-1) at 25 degrees C and the resulting binding free energy change at 25 degrees C (DeltaG degrees (25)) was -8.2 kcal mol(-1). The binding of the peptide to AP2 was also analyzed and the resulting binding constant and DeltaG degrees (25) were about 4.2 x 10(4) M(-1) and -6.3 kcal mol(-1), respectively. The difference in the binding free energy changes (DeltaDeltaG degrees (25)) of 1.9 kcal mol(-1) was comparable to the values reported in other systems and was considered a consequence of the loss of pi-pi stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Peptídeos/metabolismo , Técnicas de Química Combinatória , Proteínas de Ligação a DNA/química , Cinética , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/metabolismo , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Ressonância de Plasmônio de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA