Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445905

RESUMO

F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1' parts, presumably via their δ-subunits, forming "I" shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Cloroplastos/metabolismo , Óxido Nítrico Sintase/metabolismo , Polímeros/metabolismo
2.
Nat Commun ; 13(1): 4736, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961984

RESUMO

The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.


Assuntos
Receptores de Lisoesfingolipídeo , Esfingosina , Humanos , Sistema Imunitário , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia
3.
Commun Biol ; 5(1): 360, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422073

RESUMO

In this work we examine how small hydrophobic molecules such as inert gases interact with membrane proteins (MPs) at a molecular level. High pressure atmospheres of argon and krypton were used to produce noble gas derivatives of crystals of three well studied MPs (two different proton pumps and a sodium light-driven ion pump). The structures obtained using X-ray crystallography showed that the vast majority of argon and krypton binding sites were located on the outer hydrophobic surface of the MPs - a surface usually accommodating hydrophobic chains of annular lipids (which are known structural and functional determinants for MPs). In conformity with these results, supplementary in silico molecular dynamics (MD) analysis predicted even greater numbers of argon and krypton binding positions on MP surface within the bilayer. These results indicate a potential importance of such interactions, particularly as related to the phenomenon of noble gas-induced anaesthesia.


Assuntos
Anestésicos , Criptônio , Argônio/química , Argônio/farmacologia , Cristalografia por Raios X , Criptônio/química , Criptônio/metabolismo , Lipídeos
4.
Front Cell Dev Biol ; 9: 698658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307376

RESUMO

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA