Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(5): 2739-2761, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33620219

RESUMO

Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.


Assuntos
Amidas/farmacologia , Antimaláricos/farmacologia , Hemoglobinas/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Tetrazóis/farmacologia , Amidas/síntese química , Amidas/farmacocinética , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hemeproteínas/antagonistas & inibidores , Células Hep G2 , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/farmacocinética
2.
Acc Chem Res ; 50(7): 1606-1616, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28636311

RESUMO

New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine protease-mediated hydrolysis of hemoglobin. We further expound on the recombinant enzyme assays, heme fractionation experiments, and genomic and chemoproteomic methods that we employed to identify Plasmodium falciparum falcipain 2 (PfFP2), hemozoin formation, phosphatidylinositol 4-kinase (PfPI4K) and Mycobacterium tuberculosis cytochrome bc1 complex as the targets of the antimalarial chalcones, pyrido[1,2-a]benzimidazoles, aminopyridines, and antimycobacterial pyrrolo[3,4-c]pyridine-1,3(2H)-diones, respectively. In conclusion, we argue for the expansion of chemical space through exploitation of privileged natural product scaffolds and diversity-oriented synthesis, as well as the broadening of druggable spaces by exploiting available protein crystal structures, -omics data, and bioinformatics infrastructure to explore hitherto untargeted spaces like lipid metabolism and protein kinases in P. falciparum. Finally, we audit the merits of both target-based and whole-cell phenotypic screening in steering antimalarial and antituberculosis chemical matter toward populating drug discovery pipelines with new lead molecules.


Assuntos
Antimaláricos/química , Antituberculosos/química , Descoberta de Drogas , Animais , Antimaláricos/farmacologia , Antituberculosos/farmacologia , Humanos
3.
ACS Infect Dis ; 3(6): 411-420, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28440625

RESUMO

The extensive use of praziquantel against schistosomiasis raises concerns about drug resistance. New therapeutic alternatives targeting critical pathways within the parasite are therefore urgently needed. Hemozoin formation in Schistosoma presents one such target. We assessed the in vitro antischistosomal activity of pyrido[1,2-a]benzimidazoles (PBIs) and investigated correlations with their ability to inhibit ß-hematin formation. We further evaluated the in vivo efficacy of representative compounds in experimental mice and conducted pharmacokinetic analysis on the most potent. At 10 µM, 48/57 compounds resulted in >70% mortality of newly transformed schistosomula, whereas 37 of these maintained >60% mortality of adult S. mansoni. No correlations were observed between ß-hematin inhibitory and antischistosomal activities against both larval and adult parasites, suggesting possible presence of other target(s) or a mode of inhibition of crystal formation that is not adequately modeled by the assay. The most active compound in vivo showed 58.7 and 61.3% total and female worm burden reduction, respectively. Pharmacokinetic analysis suggested solubility-limited absorption and high hepatic clearance as possible contributors to the modest efficacy despite good in vitro activity. The PBIs evaluated in this report thus merit further optimization to improve their efficacy and to elucidate their possible mode of action.


Assuntos
Benzimidazóis/farmacologia , Piridinas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/farmacologia , Animais , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Modelos Animais de Doenças , Feminino , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Concentração Inibidora 50 , Camundongos , Praziquantel/farmacologia , Piridinas/síntese química , Piridinas/farmacocinética , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Esquistossomicidas/síntese química , Esquistossomicidas/farmacocinética , Relação Estrutura-Atividade
4.
Dalton Trans ; 45(34): 13415-26, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27485032

RESUMO

A series of mono- and multimeric polyamine-containing ferrocenyl complexes containing a quinoline motif were prepared. The complexes were characterised by standard techniques. The molecular structure of the monomeric salicylaldimine derivative was elucidated using single crystal X-ray diffraction and was consistent with the proposed structure. The antiplasmodial activity of the compounds were evaluated in vitro against both the NF54 (chloroquine-sensitive) and K1 (chloroquine-resistant) strains of Plasmodium falciparum. The polyamine derivatives exhibit good resistance index values suggesting that these systems are beneficial in overcoming the resistance experienced by chloroquine. Mechanistic studies suggest that haemozoin formation may be the target of these quinoline complexes in the parasite. Some of the complexes exhibit moderate to high cytotoxicity against WHCO1 oesophageal cancer cells in vitro. The monomeric ferrocenyl-amine complexes exhibit potent activity against this particular cell line. The complexes were also screened against the G3 strain of Trichomonas vaginalis and the salicylaldimine complexes demonstrated promising activity at the tested concentration. All of these compounds show no inhibitory effect on several common normal flora bacteria, indicative of their selectivity for eukaryotic pathogens and cancer.


Assuntos
Antiparasitários/síntese química , Compostos Ferrosos/química , Metalocenos/química , Plasmodium falciparum/efeitos dos fármacos , Poliaminas/síntese química , Quinolinas/química , Trichomonas vaginalis/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Antiparasitários/química , Antiparasitários/farmacologia , Resistência a Medicamentos , Estrutura Molecular , Poliaminas/química , Poliaminas/farmacologia
5.
Food Nutr Bull ; 37(2): 153-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944505

RESUMO

Food fortified with folic acid has been available for consumption in North America for over a decade. This strategy has led to an increase in folate levels in the general population and, more importantly, a significant decrease in the incidence of neural tube defects. However, this increase in folate intake has been associated with a greater risk of cancer disease. Many African countries are now embracing this concept; however, because folate promotes malaria parasite division, as it does in cancer cells, there is a possibility of malaria exacerbation if folate intake is increased. A precedent for such a concern is the now compelling evidence showing that an increase in iron intake can lead to a higher malaria risk; as a result, mass administration of iron in malaria-endemic areas is not recommended. In this article, we review work on the effect of folate on malaria parasites. Although this topic has received little research attention, the available data suggest that the increase in folate concentration could be associated with an increase in malaria infection. Thus, the introduction of food fortification with folic acid in malaria-endemic areas should be attended by precautionary programs to monitor the risk of malaria.


Assuntos
Suplementos Nutricionais/efeitos adversos , Ácido Fólico/efeitos adversos , Alimentos Fortificados/efeitos adversos , Malária/epidemiologia , África , Animais , Humanos , Malária/parasitologia
6.
Expert Opin Ther Pat ; 25(9): 1003-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26013494

RESUMO

INTRODUCTION: Chloroquine (CQ) has been well known for its antimalarial effects since World War II. However, it is gradually being phased out from clinical use against malaria due to emergence of CQ-resistant Plasmodium falciparum strains. Besides low cost and tolerability, ongoing research has revealed interesting biochemical properties of CQ that have inspired its repurposing/repositioning in the management of various infectious/noninfectious diseases. Consequently, several novel compounds and compositions based on its scaffold have been studied and patented. AREAS COVERED: In this review, patents describing CQ and its derivatives/compositions over the last 5 years are analyzed. The review highlights the rationale, chemical structures, biological evaluation and potential therapeutic application of CQ, its derivatives and compositions. EXPERT OPINION: Repurposing efforts have dominantly focused on racemic CQ with no studies exploring the effect of the (R) and (S) enantiomers, which might potentially have additional benefits in other diseases. Additionally, evaluating other similarly acting antimalarials in clinical use and structural analogs could help maximize the intrinsic value of the 4-aminoquinolines. With regard to cancer therapy, successful repurposing of CQ-containing compounds will require linking the mode of action of these antimalarials with the signaling pathways that drive cancer cell proliferation to facilitate the development of a 4-amino-7-chloroquinoline that can be used as a synergistic partner in anticancer combination chemotherapy.


Assuntos
Cloroquina/farmacologia , Desenho de Fármacos , Reposicionamento de Medicamentos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/química , Humanos , Patentes como Assunto , Estereoisomerismo
7.
Trends Parasitol ; 26(3): 125-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20056487

RESUMO

The emergence of artemisinin resistance could adversely impact the current strategy for malaria treatment; thus, new drugs are urgently needed. A possible approach to developing new antimalarials is to find new uses for old drugs. Some anticancer agents such as methotrexate and trimetrexate are active against malaria. However, they are commonly perceived to be toxic and thus not suitable for malaria treatment. In this opinion article, we examine how the toxicity of anticancer agents is just a matter of dose or 'only dose makes the poison', as coined in Paracelsus' law. Thus, the opportunity exists to discover new antimalarials using the anticancer pharmacopoeia.


Assuntos
Antineoplásicos/uso terapêutico , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Antineoplásicos/toxicidade , Humanos , Metotrexato/uso terapêutico , Metotrexato/toxicidade , Trimetrexato/uso terapêutico , Trimetrexato/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA