Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 131840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679255

RESUMO

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/química , Humanos , Termodinâmica , Desenho de Fármacos
2.
Nutrients ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375545

RESUMO

Dendrobium officinale is one of the most widely used medicinal herbs, especially in Asia. In recent times, the polysaccharide content of D. officinale has garnered attention due to the numerous reports of its medicinal properties, such as anticancer, antioxidant, anti-diabetic, hepatoprotective, neuroprotective, and anti-aging activities. However, few reports of its anti-aging potential are available. Due to high demand, the wild D. officinale is scarce; hence, alternative cultivation methods are being employed. In this study, we used the Caenorhabditis elegans model to investigate the anti-aging potential of polysaccharides extracted from D. officinale (DOP) grown in three different environments; tree (TR), greenhouse (GH), and rock (RK). Our findings showed that at 1000 µg/mL, GH-DOP optimally extended the mean lifespan by 14% and the maximum lifespan by 25% (p < 0.0001). TR-DOP and RK-DOP did not extend their lifespan at any of the concentrations tested. We further showed that 2000 µg/mL TR-DOP, GH-DOP, or RK-DOP all enhanced resistance to H2O2-induced stress (p > 0.05, p < 0.01, and p < 0.01, respectively). In contrast, only RK-DOP exhibited resistance (p < 0.01) to thermal stress. Overall, DOP from the three sources all increased HSP-4::GFP levels, indicating a boost in the ability of the worms to respond to ER-related stress. Similarly, DOP from all three sources decreased α-synuclein aggregation; however, only GH-DOP delayed ß-amyloid-induced paralysis (p < 0.0001). Our findings provide useful information on the health benefits of DOP and also provide clues on the best practices for cultivating D. officinale for maximum medicinal applications.


Assuntos
Dendrobium , Animais , Caenorhabditis elegans , Peróxido de Hidrogênio , Polissacarídeos/farmacologia , Antioxidantes/farmacologia
3.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885907

RESUMO

In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Caenorhabditis elegans/fisiologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos
4.
Open Life Sci ; 16(1): 431-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987480

RESUMO

A new approach is adopted to treat primary immunodeficiency disorders, such as the severe combined immunodeficiency (SCID; e.g., adenosine deaminase SCID [ADA-SCID] and IL-2 receptor X-linked severe combined immunodeficiency [SCID-X1]). The success, along with the feasibility of gene therapy, is undeniable when considering the benefits recorded for patients with different classes of diseases or disorders needing treatment, including SCID-X1 and ADA-SCID, within the last two decades. ß-Thalassemia and sickle cell anemia are two prominent monogenic blood hemoglobin disorders for which a solution has been sought using gene therapy. For instance, transduced autologous CD34+ HSCs via a self-inactivating (SIN)-Lentivirus (LV) coding for a functional copy of the ß-globin gene has become a feasible procedure. adeno-associated virus (AAV) vectors have found application in ocular gene transfer in retinal disease gene therapy (e.g., Leber's congenital amaurosis type 2), where no prior treatment existed. In neurodegenerative disorders, successes are now reported for cases involving metachromatic leukodystrophy causing severe cognitive and motor damage. Gene therapy for hemophilia also remains a viable option because of the amount of cell types that are capable of synthesizing biologically active FVIII and FIX following gene transfer using AAV vectors in vivo to correct hemophilia B (FIX deficiency), and it is considered an ideal target, as proven in preclinical studies. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene-editing tool has taken a center stage in gene therapy research and is reported to be efficient and highly precise. The application of gene therapy to these areas has pushed forward the therapeutic clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA