Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37116499

RESUMO

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Assuntos
Dermatite , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Inflamação , Peptidoglicano/metabolismo , Células Epiteliais/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Imunidade Inata , Mamíferos
2.
Front Immunol ; 11: 1828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983094

RESUMO

The NLRP3 inflammasome is central to host defense and implicated in various inflammatory diseases and conditions. While the favored paradigm of NLRP3 inflammasome activation stipulates a unifying signal intermediate that de-represses NLRP3, this view has not been tested. Further, structures within NLRP3 required for inflammasome activation are poorly defined. Here we demonstrate that while the NLRP3 LRRs are not auto-repressive and are not required for inflammasome activation by all agonists, distinct sequences within the NLRP3 LRRs positively and negatively modulate inflammasome activation by specific ligands. In addition, elements within the HD1/HD2 "hinge" of NLRP3 and the nucleotide-binding domain have contrasting functions depending upon the specific agonists. Further, while NLRP3 1-432 is minimally sufficient for inflammasome activation by all agonists tested, the pyrin, and linker domains (1-134) function cooperatively and are sufficient for inflammasome activation by certain agonists. Conserved cysteines 8 and 108 appear important for inflammasome activation by sterile, but not infectious insults. Our results define common and agonist-specific regions of NLRP3 that likely mediate ligand-specific responses, discount the hypothesis that NLRP3 inflammasome activation has a unified mechanism, and implicate NLRP3 as an integrator of agonist-specific, inflammasome activating signals.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Francisella/fisiologia , Células HEK293 , Humanos , Inflamassomos/agonistas , Inflamassomos/química , Inflamassomos/imunologia , Leucina , Ligantes , Listeria monocytogenes/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR , Domínio Pirina , Sequências Repetitivas de Aminoácidos
3.
PLoS Pathog ; 12(6): e1005669, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280707

RESUMO

Leishmania amastigotes manipulate the activity of macrophages to favor their own success. However, very little is known about the role of innate recognition and signaling triggered by amastigotes in this host-parasite interaction. In this work we developed a new infection model in adult Drosophila to take advantage of its superior genetic resources to identify novel host factors limiting Leishmania amazonensis infection. The model is based on the capacity of macrophage-like cells, plasmatocytes, to phagocytose and control the proliferation of parasites injected into adult flies. Using this model, we screened a collection of RNAi-expressing flies for anti-Leishmania defense factors. Notably, we found three CD36-like scavenger receptors that were important for defending against Leishmania infection. Mechanistic studies in mouse macrophages showed that CD36 accumulates specifically at sites where the parasite contacts the parasitophorous vacuole membrane. Furthermore, CD36-deficient macrophages were defective in the formation of the large parasitophorous vacuole typical of L. amazonensis infection, a phenotype caused by inefficient fusion with late endosomes and/or lysosomes. These data identify an unprecedented role for CD36 in the biogenesis of the parasitophorous vacuole and further highlight the utility of Drosophila as a model system for dissecting innate immune responses to infection.


Assuntos
Antígenos CD36/imunologia , Endocitose/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Leishmaniose/imunologia , Macrófagos/microbiologia , Animais , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Drosophila , Imunidade Inata/imunologia , Leishmania mexicana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Reação em Cadeia da Polimerase , Vacúolos
4.
J Immunol ; 196(12): 5056-63, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183605

RESUMO

Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1ß expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1ß secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host.


Assuntos
Interações Hospedeiro-Parasita , Leishmania/crescimento & desenvolvimento , Leishmania/imunologia , Leishmaniose/parasitologia , Fosfoproteínas Fosfatases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular , Heme/análise , Heme/farmacologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leishmania/efeitos dos fármacos , Leishmaniose/sangue , Leishmaniose/imunologia , Leishmaniose/microbiologia , Leishmaniose Visceral/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Óxido Nítrico/biossíntese , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA