Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2210766119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442093

RESUMO

Transient soluble oligomers of amyloid-ß (Aß) are toxic and accumulate early prior to insoluble plaque formation and cognitive impairment in Alzheimer's disease (AD). Synthetic cyclic D,L-α-peptides (e.g., 1) self-assemble into cross ß-sheet nanotubes, react with early Aß species (1-3 mers), and inhibit Aß aggregation and toxicity in stoichiometric concentrations, in vitro. Employing a semicarbazide as an aza-glycine residue with an extra hydrogen-bond donor to tune nanotube assembly and amyloid engagement, [azaGly6]-1 inhibited Aß aggregation and toxicity at substoichiometric concentrations. High-resolution NMR studies revealed dynamic interactions between [azaGly6]-1 and Aß42 residues F19 and F20, which are pivotal for early dimerization and aggregation. In an AD mouse model, brain positron emission tomography (PET) imaging using stable 64Cu-labeled (aza)peptide tracers gave unprecedented early amyloid detection in 44-d presymptomatic animals. No tracer accumulation was detected in the cortex and hippocampus of 44-d-old 5xFAD mice; instead, intense PET signal was observed in the thalamus, from where Aß oligomers may spread to other brain parts with disease progression. Compared with standard 11C-labeled Pittsburgh compound-B (11C-PIB), which binds specifically fibrillar Aß plaques, 64Cu-labeled (aza)peptide gave superior contrast and uptake in young mouse brain correlating with Aß oligomer levels. Effectively crossing the blood-brain barrier (BBB), peptide 1 and [azaGly6]-1 reduced Aß oligomer levels, prolonged lifespan of AD transgenic Caenorhabditis elegans, and abated memory and behavioral deficits in nematode and murine AD models. Cyclic (aza)peptides offer novel promise for early AD diagnosis and therapy.


Assuntos
Doença de Alzheimer , Amiloidose , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Diagnóstico Precoce , Peptídeos beta-Amiloides , Placa Amiloide , Proteínas Amiloidogênicas
2.
Front Neurosci ; 16: 937663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033613

RESUMO

Obesity and hyperglycemia are risk factors for cognitive decline and for the development of Alzheimer's Disease (AD). Bariatric surgery is an effective treatment for obesity that was shown to improve cognitive decline in obese patients. Bariatric surgery was shown to exert weight loss independent effects on metabolic diseases such as type 2 diabetes. We tested whether sleeve gastrectomy (SG), a common bariatric surgery, can affect the cognitive impairment in lean, normoglycemic female 5xFAD mice, a genetic model for AD. 5xFAD mice and wild-type (WT) littermates underwent SG or sham surgery at the age of 5 months and were tested for metabolic, behavioral, and molecular phenotypes 90 days later. SG led to a reduction in blood glucose levels and total plasma cholesterol levels in 5xFAD mice without inducing weight loss. However, the surgery did not affect the outcomes of long-term spatial memory tests in these mice. Analysis of ß-Amyloid plaques corroborated the behavioral studies in showing no effect of surgery on the molecular phenotype of 5xFAD mice. In conclusion, SG leads to an improved metabolic profile in lean female 5xFAD mice without inducing weight loss but does not affect the brain pathology or behavioral phenotype. Our results suggest that the positive effects of bariatric surgery on cognitive decline in obese patients are likely attributed to weight loss and improvement in obesity sequelae, and not to weight loss independent effects of surgery.

3.
Front Immunol ; 12: 621440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248930

RESUMO

The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.


Assuntos
Síndrome de Down/imunologia , Sistema Imunitário/fisiologia , Orthomyxoviridae/fisiologia , Vírus Sinciciais Respiratórios/fisiologia , Infecções Respiratórias/imunologia , SARS-CoV-2/fisiologia , Viroses/imunologia , Adulto , Animais , COVID-19 , Síndrome de Down/genética , Síndrome de Down/mortalidade , Humanos , Pneumonia , Infecções Respiratórias/genética , Infecções Respiratórias/mortalidade , Risco , Viroses/genética , Viroses/mortalidade
4.
Epilepsia ; 58(4): 586-596, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166388

RESUMO

OBJECTIVE: Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). METHODS: To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)ß. RESULTS: Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNß, and increased survival following SE. SIGNIFICANCE: This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE.


Assuntos
Convulsivantes/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/genética , Pilocarpina/toxicidade , Receptor 3 Toll-Like/deficiência , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/mortalidade , Epilepsia/patologia , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Receptor 3 Toll-Like/genética
5.
FEBS Lett ; 588(17): 3233-9, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25019573

RESUMO

Pancreatic polypeptide (PP) is a major agonist for neuropeptide Y4 receptors (NPY4R). While NPY4R has been identified in various tissues, the cells on which it is expressed and its function in those cells has not been clearly delineated. Here we report that NPY4R is present in all somatostatin-containing cells of tissues that we tested, including pancreatic islets, duodenum, hippocampus, and hypothalamus. Its agonism by PP decreases somatostatin secretion from human islets. Mouse embryonic hippocampal (mHippo E18) cells expressed NPY4Rs and their activation by PP consistently decreased somatostatin secretion. Furthermore, central injection of PP in mice induced c-Fos immunoreactivity in somatostatin-containing cells in the hippocampus compared with PBS-injected mice. In sum, our results identify PP as a pivotal modulator of somatostatin secretion.


Assuntos
Polipeptídeo Pancreático/farmacologia , Somatostatina/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Especificidade de Órgãos , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo
6.
Neurobiol Dis ; 62: 286-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141018

RESUMO

Recent findings suggest that Notch-1 signaling contributes to neuronal death in ischemic stroke, but the underlying mechanisms are unknown. Hypoxia inducible factor-1α (HIF-1α), a global regulator of cellular responses to hypoxia, can interact with Notch and modulate its signaling during hypoxic stress. Here we show that Notch signaling interacts with the HIF-1α pathway in the process of ischemic neuronal death. We found that a chemical inhibitor of the Notch-activating enzyme, γ-secretase, and a HIF-1α inhibitor, protect cultured cortical neurons against ischemic stress, and combined inhibition of Notch-1 and HIF-1α further decreased neuronal death. HIF-1α and Notch intracellular domain (NICD) are co-expressed in the neuronal nucleus, and co-immunoprecipitated in cultured neurons and in brain tissue from mice subjected to focal ischemic stroke. Overexpression of NICD and HIF-1α in cultured human neural cells enhanced cell death under ischemia-like conditions, and a HIF-1α inhibitor rescued the cells. RNA interference-mediated depletion of endogenous NICD and HIF-1α also decreased cell death under ischemia-like conditions. Finally, mice treated with inhibitors of γ-secretase and HIF-1α exhibited improved outcome after focal ischemic stroke, with combined treatment being superior to individual treatments. Additional findings suggest that the NICD and HIF-1α collaborate to engage pro-inflammatory and apoptotic signaling pathways in stroke.


Assuntos
Isquemia Encefálica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/metabolismo , Receptor Notch1/metabolismo , Acidente Vascular Cerebral/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Morte Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Infarto da Artéria Cerebral Anterior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
7.
Cardiovasc Res ; 89(1): 72-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20736238

RESUMO

AIMS: glucagon-like peptide 1 (GLP-1) is an incretin hormone released from the gut in response to food intake. Whereas GLP-1 acts in the periphery to inhibit glucagon secretion and stimulate insulin release, it also acts in the central nervous system to mediate autonomic control of feeding, body temperature, and cardiovascular function. Because of its role as an incretin hormone, GLP-1 receptor analogs are used as a treatment for type 2 diabetes. Central or peripheral administration of GLP-1 increases blood pressure and heart rate, possibly by activating brainstem autonomic nuclei and increasing vagus nerve activity. However, the mechanism(s) by which GLP-1 receptor stimulation affects cardiovascular function are unknown. We used the long-lasting GLP-1 receptor agonist Exendin-4 (Ex-4) to test the hypothesis that GLP-1 signalling modulates central parasympathetic control of heart rate. METHODS AND RESULTS: using a telemetry system, we assessed heart rate in mice during central Ex-4 administration. Heart rate was increased by both acute and chronic central Ex-4 administration. Spectral analysis indicated that the high frequency and low frequency powers of heart rate variability were diminished by Ex-4 treatment. Finally, Ex-4 decreased both excitatory glutamatergic and inhibitory glycinergic neurotransmission to preganglionic parasympathetic cardiac vagal neurons. CONCLUSION: these data suggest that central GLP-1 receptor stimulation diminishes parasympathetic modulation of the heart thereby increasing heart rate.


Assuntos
Frequência Cardíaca/fisiologia , Coração/inervação , Receptores de Glucagon/fisiologia , Transmissão Sináptica/fisiologia , Nervo Vago/fisiologia , Animais , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Peçonhas/administração & dosagem , Peçonhas/farmacologia
8.
Hum Mol Genet ; 20(4): 659-69, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21106706

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expanded polyglutamine repeats in the huntingtin (Htt) protein. Mutant Htt may damage and kill striatal neurons by a mechanism involving reduced production of brain-derived neurotrophic factor (BDNF) and increased oxidative and metabolic stress. Because electroconvulsive shock (ECS) can stimulate the production of BDNF and protect neurons against stress, we determined whether ECS treatment would modify the disease process and provide a therapeutic benefit in a mouse model of HD. ECS (50 mA for 0.2 s) or sham treatment was administered once weekly to male N171-82Q Htt mutant mice beginning at 2 months of age. Endpoints measured included motor function, striatal and cortical pathology, and levels of protein chaperones and BDNF. ECS treatment delayed the onset of motor symptoms and body weight loss and extended the survival of HD mice. Striatal neurodegeneration was attenuated and levels of protein chaperones (Hsp70 and Hsp40) and BDNF were elevated in striatal neurons of ECS-treated compared with sham-treated HD mice. Our findings demonstrate that ECS can increase the resistance of neurons to mutant Htt resulting in improved functional outcome and extended survival. The potential of ECS as an intervention in subjects that inherit the mutant Htt gene merits further consideration.


Assuntos
Progressão da Doença , Eletrochoque , Doença de Huntington/patologia , Doença de Huntington/terapia , Mutação/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais , Análise de Sobrevida
9.
Neuromolecular Med ; 12(2): 164-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19844812

RESUMO

Immunoglobulins are proteins with a highly variable antigen-binding domain and a constant region (Fc domain) that binds to a cell surface receptor (FcR). Activation of FcRs in immune cells (lymphocytes, macrophages, and mast cells) triggers effector responses including cytokine production, phagocytosis, and degranulation. In addition to their roles in normal responses to infection or tissue injury, and in immune-related diseases, FcRs are increasingly recognized for their involvement in neurological disorders. One or more FcRs are expressed in microglia, astrocytes, oligodendrocytes, and neurons. Aberrant activation of FcRs in such neural cells may contribute to the pathogenesis of major neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, ischemic stroke, and multiple sclerosis. On the other hand, FcRs may play beneficial roles in counteracting pathological processes; for e.g., FcRs may facilitate removal of amyloid peptides from the brain and so protect against Alzheimer's disease. Knowledge of the functions of FcRs in the nervous system in health and disease is leading to novel preventative and therapeutic strategies for stroke, Alzheimer's disease, and other neurological disorders.


Assuntos
Doenças do Sistema Nervoso Central/fisiopatologia , Receptores Fc/fisiologia , Doença de Alzheimer/fisiopatologia , Astrócitos/fisiologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Doenças do Sistema Nervoso Central/imunologia , Humanos , Imunidade Inata , Linfócitos/fisiologia , Macrófagos/fisiologia , Mastócitos/fisiologia , Microglia/fisiologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Receptores Fc/imunologia , Transdução de Sinais , Acidente Vascular Cerebral/fisiopatologia
10.
Leuk Lymphoma ; 50(4): 625-32, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19373661

RESUMO

B chronic lymphocytic leukemia (B-CLL) cells exist in patients as slowly accumulating resting as well as proliferating B cells. In this study, we examined whether Rapamycin and Curcumin, two naturally occurring compounds shown to have apoptotic effects, could selectively induce apoptosis in resting B-CLL cells. Mononuclear cells isolated from patients with B-CLL were treated with these agents and analysed by AnnexinV/propidium iodide binding, caspase activity, and changes in bcl-2/Bax ratio. Rapamycin and curcumin significantly induced apoptosis in resting B-CLL cells obtained from patients with CLL. Furthermore, rapamycin and curcumin increased caspase 9, 3 and 7 activity, decreased anti-apoptotic bcl-2 levels, and increased the pro-apoptotic protein Bax. These data suggest rapamycin and curcumin may be an effective treatment for B-CLL and are of high clinical significance considering the growing population of patients and lack of efficient treatment for this malignant disease.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Leucemia Linfocítica Crônica de Células B/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Sirolimo/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 9/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo
11.
FEBS J ; 274(12): 3159-70, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17521335

RESUMO

Ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) is an organotellurium compound with pleiotropic functions that has been associated with antitumoral, immunomodulatory and antineurodegenerative activities. Tellurium compounds with a +4 oxidation state, such as AS101, react uniquely with thiols, forming disulfide molecules. In light of this, we tested whether AS101 can react with the amino acid homocysteine both in vitro and in vivo. AS101 conferred protection against homocysteine-induced apoptosis of HL-60 cells. The protective mechanism of AS101 against homocysteine toxicity was directly mediated by its chemical reactivity, whereby AS101 reacted with homocysteine to form homocystine, the less toxic disulfide form of homocysteine. Moreover, AS101 was shown here to reduce the levels of total homocysteine in an in vivo model of hyperhomocysteinemia. As a result, AS101 also prevented sperm cells from undergoing homocysteine-induced DNA fragmentation. Taken together, our results suggest that the organotellurium compound AS101 may be of clinical value in reducing total circulatory homocysteine levels.


Assuntos
Apoptose/efeitos dos fármacos , Etilenos/farmacologia , Homocisteína/metabolismo , Homocistina/metabolismo , Hiper-Homocisteinemia/tratamento farmacológico , Animais , Fragmentação do DNA/efeitos dos fármacos , Etilenos/uso terapêutico , Células HL-60 , Humanos , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatozoides/patologia
12.
Ann N Y Acad Sci ; 1095: 240-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17404037

RESUMO

Interleukin-10 (IL-10) plays a major proliferative role in many tumors, and activates the transcription factor Stat3 by tyrosine phosphorylation. The immunomodulator ammonium trichloro (dioxoethylene-o,o') tellurate (AS101) has a direct antitumor activity, and is able to sensitize several tumors to chemotherapy, by inhibiting the tumor IL-10 autocrine loop. The tyrosine kinase Fer is essential for the proliferation of numerous malignant cell lines and in some cases was related to Stat3 activation. This article examined the role of AS101 in IL-10 signaling, and the correlation between Fer and Stat3, in human peripheral blood mononuclear cells (PBMC). We show that Fer was associated with Stat3 in PBMC and RAW 264.7, a macrophage cell line. Recombinant IL-10 (rIL-10) increased the tyrosine phosphorylation of Stat3, upregulated the levels of Fer, and increased the association of Fer with phosphorylated Stat3 (pYStat3). All the activities of IL-10 mentioned above were reversed by AS101. The effects conferred by AS101 were totally abolished by exogenous addition of rIL-10. These results indicate that AS101 downregulates the Stat3 IL-10 loop, and inhibits Fer association with pYStat3. We conclude that anti-IL-10 treatment using AS101, may be beneficial in certain malignancies and other pathologies in which IL-10 secretion is elevated and Stat3 is continuously phosphorylated.


Assuntos
Adjuvantes Imunológicos/farmacologia , Etilenos/farmacologia , Interleucina-10/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Transdução de Sinais/fisiologia
13.
Nat Med ; 12(6): 621-3, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16680150

RESUMO

Mice transgenic for antisense Notch and normal mice treated with inhibitors of the Notch-activating enzyme gamma-secretase showed reduced damage to brain cells and improved functional outcome in a model of focal ischemic stroke. Notch endangers neurons by modulating pathways that increase their vulnerability to apoptosis, and by activating microglial cells and stimulating the infiltration of proinflammatory leukocytes. These findings suggest that Notch signaling may be a therapeutic target for treatment of stroke and related neurodegenerative conditions.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Endopeptidases/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia , Secretases da Proteína Precursora do Amiloide , Animais , Apoptose , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Células Cultivadas , Endopeptidases/genética , Inibidores Enzimáticos/metabolismo , Humanos , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Receptor Notch1/genética , Traumatismo por Reperfusão , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA