Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(8): 3951-3958, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795375

RESUMO

Pertuzumab is a monoclonal antibody used for the treatment of HER2-positive breast cancer in combination with trastuzumab. Charge variants of trastuzumab have been extensively described in the literature; however, little is known about the charge heterogeneity of pertuzumab. Here, changes in the ion-exchange profile of pertuzumab were evaluated by pH gradient cation-exchange chromatography after stressing it for up to 3 weeks at physiological and elevated pH and 37 °C. Isolated charge variants arising under stress conditions were characterized by peptide mapping. The results of peptide mapping showed that deamidation in the Fc domain and N-terminal pyroglutamate formation in the heavy chain are the main contributors to charge heterogeneity. The heavy chain CDR2, which is the only CDR containing asparagine residues, was quite resistant to deamidation under stress conditions according to peptide mapping results. Using surface plasmon resonance, it was shown that the affinity of pertuzumab for the HER2 target receptor does not change under stress conditions. Peptide mapping analysis of clinical samples showed an average of 2-3% deamidation in the heavy chain CDR2, 20-25% deamidation in the Fc domain, and 10-15% N-terminal pyroglutamate formation in the heavy chain. These findings suggest that in vitro stress studies are able to predict in vivo modifications.


Assuntos
Neoplasias da Mama , Regiões Determinantes de Complementaridade , Humanos , Feminino , Ácido Pirrolidonocarboxílico , Anticorpos Monoclonais Humanizados , Trastuzumab , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2
2.
Methods Mol Biol ; 2628: 221-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781789

RESUMO

Liquid chromatography (LC) coupled to mass spectrometry (MS) is increasingly used for quantification of proteins in blood. This development is prompted by ongoing improvements in detection sensitivities of LC-MS instruments and corresponding sample preparation workflows. The combination of immunoaffinity enrichment and targeted LC-MS detection is a notable analytical platform in this regard as it allows for the quantification of low abundance proteins in biological matrices like plasma and serum. Here, we describe such hybrid methods which are based on the enrichment of proteins with antibodies or affimers coupled to adsorptive microtiter plates, the proteolytic digestion of enriched proteins to release protein-specific peptides, and the detection of these peptides by microflow LC coupled to selected reaction monitoring MS.


Assuntos
Peptídeos , Proteínas , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Cromatografia de Afinidade/métodos
3.
Drug Metab Dispos ; 51(2): 249-256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379709

RESUMO

Therapeutic proteins (TPs) are known to be heterogeneous due to modifications that occur during the production process and storage. Modifications may also occur in TPs after their administration to patients due to in vivo biotransformation. Ligand binding assays, which are widely used in the bioanalysis of TPs in body fluids, are typically unable to distinguish such modifications. Liquid chromatography coupled to mass spectrometry is being increasingly used to study modifications in TPs, but its use to study in vivo biotransformation has been limited until now. We present a novel approach that combines affinity enrichment using Affimer reagents with ion-exchange chromatography (IEX) to analyze charge variants of the TPs trastuzumab and pertuzumab in plasma of patients undergoing therapy for HER2-positive breast cancer. Affimer reagents were immobilized via engineered Cys tags to maleimide beads, and the TPs were eluted under acidic conditions followed by rapid neutralization. The enriched TPs were analyzed by cation-exchange chromatography (IEX) using pH-gradient elution, resulting in the separation of about 20 charge variants for trastuzumab and about five charge variants for pertuzumab. A comparison between in vitro stressed TPs spiked into plasma, and TPs enriched from patient plasma showed that the observed profiles were highly similar. This indicates that in vitro stress testing in plasma can mimic the situation in patient plasma, as far as the generation of charge variants is concerned. SIGNIFICANCE STATEMENT: This research attempts to elucidate the modifications that occur in therapeutic proteins (TPs) after they have been administered to patients. This is important because there is little knowledge about the fate of TPs in this regard, and certain modifications could affect their efficiency. Our results show that the modifications discovered are most likely due to a chemical process and are not patient specific.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Cromatografia por Troca Iônica , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica
4.
Anal Chem ; 93(40): 13597-13605, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582688

RESUMO

Trastuzumab and pertuzumab are monoclonal antibodies used in the treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. Therapeutic proteins may undergo chemical modifications that may affect the results of bioanalytical assays, as well as their therapeutic efficacy. Modifications may arise during production and storage, as well as after administration to patients. Studying in vivo biotransformation of monoclonal, therapeutic antibodies requires their enrichment from plasma to discriminate them from endogenous antibodies, as well as from other plasma proteins. To this end, we screened Affimer reagents for selectivity toward trastuzumab or pertuzumab. Affimer reagents are alternative binding proteins possessing two variable binding loops that are based on the human protease inhibitor stefin A or phytocystatin protein scaffolds. Affimer reagents were selected from an extensive library by phage display. The four best-performing binders for each therapeutic antibody were prioritized using a microtiter plate-based approach combined with liquid chromatography-mass spectrometry (LC-MS) in the selected reaction monitoring (SRM) mode. These Affimer reagents were immobilized via engineered 6-His or Cys tags to Ni2+- or maleimide beads, respectively. Recovery values of 70% and higher were obtained for both trastuzumab and pertuzumab when spiked at 100, 150, and 200 µg/mL concentrations in human plasma followed by trypsin digestion in the presence of 0.5% sodium deoxycholate and 10 mM dithiothreitol (DTT). Notably, the maleimide beads showed undetectable unspecific binding to endogenous immunoglobulin G (IgGs) or other plasma proteins when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enrichment method was applied to samples from stress tests of the antibodies at 37 °C to mimic in vivo conditions.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Cromatografia Líquida , Feminino , Humanos , Indicadores e Reagentes , Espectrometria de Massas , Receptor ErbB-2 , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA