Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740123

RESUMO

The mechanism of chemotherapeutic action of Ru-based drugs involves plasma membrane disruption and valuable insights into this process may be gained using cell membrane models. The interactions of a series of cytotoxic η6-p-cymene ruthenium(II) complexes, [Ru(η6-p-cymene)P(3,5-C(CH3)3-C6H3)3Cl2] (1), [Ru(η6-p-cymene)P(3,5-CH3-C6H3)3Cl2] (2), [Ru(η6-p-cymene)P(4-CH3O-3,5-CH3-C6H2)3Cl2] (3), and [Ru(η6-p-cymene)P(4-CH3O-C6H4)3Cl2] (4), were examined using Langmuir monolayers as simplified healthy and cancerous outer leaflet plasma membrane models. The cancerous membrane (CM1 and CM2) models contained either 40 % 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 30 % cholesterol (Chol), 20 % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 10 % 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS). Meanwhile, the healthy membrane (HM1 and HM2) models were composed of 60 % DPPC or DOPC, 30 % Chol and 10 % DPPE. The complexes affected surface pressure isotherms and decreased compressional moduli of cancerous and healthy membrane models, interacting with the monolayers headgroup and tails according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). However, the effects did not correlate with the toxicity of the complexes to cancerous and healthy cells. Multidimensional projection technique showed that the complex (1) induced significant changes in the CM1 and HM1 monolayers, though it had the lowest cytotoxicity against cancer cells and is not toxic to healthy cells. Moreover, the most toxic complexes (2) and (4) were those that least affected CM2 and HM2 monolayers. The findings here support that the ruthenium complexes interact with lipids and cholesterol in cell membrane models, and their cytotoxic activities involve a multifaceted mode of action beyond membrane disruption.


Assuntos
Membrana Celular , Cimenos , Rutênio , Cimenos/química , Cimenos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Rutênio/química , Rutênio/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Monoterpenos/química , Monoterpenos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Fosfatidilcolinas/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38652860

RESUMO

Phototherapies are promising for noninvasive treatment of aggressive tumors, especially when combining heat induction and oxidative processes. Herein, we show enhanced phototoxicity of gold shell-isolated nanorods conjugated with toluidine blue-O (AuSHINRs@TBO) against human colorectal tumor cells (Caco-2) with synergic effects of photothermal (PTT) and photodynamic therapies (PDT). Mitochondrial metabolic activity tests (MTT) performed on Caco-2 cell cultures indicated a photothermal effect from AuSHINRs owing to enhanced light absorption from the localized surface plasmon resonance (LSPR). The phototoxicity against Caco-2 cells was further increased with AuSHINRs@TBO where oxidative processes, such as hydroperoxidation, were also present, leading to a cell viability reduction from 85.5 to 39.0%. The molecular-level mechanisms responsible for these effects were investigated on bioinspired tumor membranes using Langmuir monolayers of Caco-2 lipid extract. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) revealed that the AuSHINRs@TBO incorporation is due to attractive electrostatic interactions with negatively charged groups of the Caco-2 lipid extract, resulting in the expansion of surface pressure isotherms. Upon irradiation, Caco-2 lipid extract monolayers containing AuSHINRs@TBO (1:1 v/v) exhibited ca. 1.0% increase in surface area. This is attributed to the generation of reactive oxygen species (ROS) and their interaction with Caco-2 lipid extract monolayers, leading to hydroperoxide formation. The oxidative effects are facilitated by AuSHINRs@TBO penetration into the polar groups of the extract, allowing oxidative reactions with carbon chain unsaturations. These mechanisms are consistent with findings from confocal fluorescence microscopy, where the Caco-2 plasma membrane was the primary site of the cell death induction process.

3.
ACS Appl Mater Interfaces ; 16(8): 10897-10907, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364212

RESUMO

The selective, rapid detection of low levels of hormones in drinking water and foodstuffs requires materials suitable for inexpensive sensing platforms. We report on core-shell Ag@C nanocables (NCs) decorated with carbon spherical shells (CSSs) and silver nanoparticles (AgNPs) by using a hydrothermal green approach. Sensors were fabricated with homogeneous, porous films on screen-printed electrodes, which comprised a 115 nm silver core covered by a 122 nm thick carbon layer and CSSs with 168 nm in diameter. NCs and CSSs were also decorated with 10-25 nm AgNPs. The NC/CSS/AgNP sensor was used to detect ethinylestradiol using square wave voltammetry in 0.1 M phosphate buffer (pH 7.0) over the 1.0-10.0 µM linear range with a detection limit of 0.76 µM. The sensor was then applied to detect ethinylestradiol in tap water samples and a contraceptive pill with recovery percentages between 93 and 101%. The high performance in terms of sensitivity and selectivity for hormones is attributed to the synergy between the carbon nanomaterials and AgNPs, which not only increased the sensor surface area and provided sites for electron exchange but also imparted an increased surface area.


Assuntos
Carbono , Nanopartículas Metálicas , Prata , Etinilestradiol , Água , Hormônios , Eletrodos , Técnicas Eletroquímicas
4.
Bioorg Chem ; 143: 107002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006790

RESUMO

Hormone treatments are frequently associated with cardiovascular diseases and cancers in women. Additionally, the detrimental effects of their presence as contaminants in water remain a concern. The transport of hormones through cell membranes is essential for their biological action, but investigating cell permeability is challenging owing to the experimental difficulty in dealing with whole cells. In this paper, we study the interaction of the synthetic hormone 17α-ethynylestradiol (EE2) with membrane models containing the key raft components sphingomyelin (SM) and cholesterol (Chol). The models consisted of Langmuir monolayers and giant unilamellar vesicles (GUVs) that represent bilayers. EE2 induced expansion of SM monolayers upon interacting with the non-hydrated amide group of SM head, but it had practically no effect on SM GUVs because these group are not available for interaction in bilayers. In contrast, EE2 interacted with hydrated phosphate group (PO2-) and amide group of SM/Chol mixture monolayer, which could explain the loss in phase contrast of liquid-ordered GUVs suggesting pore formation. A comparison with reported EE2 effects on GUVs in the fluid phase, for which no loss in phase contrast was observed, indicates that the liquid-ordered phase consisting of lipid rafts is relevant to be associated with the changes on cell permeability caused by the hormones.


Assuntos
Esfingomielinas , Lipossomas Unilamelares , Feminino , Humanos , Esfingomielinas/metabolismo , Hormônios , Colesterol , Microdomínios da Membrana/metabolismo , Amidas
5.
Colloids Surf B Biointerfaces ; 220: 112886, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183636

RESUMO

Drug resistance is known to depend on the interactions with cell membranes and other molecules such as human cytochromes P450 (CYPs) which are anchored on the endoplasmic reticulum (ER) membrane and involved in the metabolism of anticancer drugs. In this study, we determined the influence from cytochrome P450 3A4 (CYP3A4) on the interaction between the drug doxorubicin (DOX) and Langmuir monolayers mimicking cell membranes. The lipid composition was varied by changing the relative concentrations of cholesterol (Chol), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and L-α-phosphatidylinositol (PI). Three compositions were studied in detail which represented a healthy cell membrane and cancerous cell membranes. DOX induced an expansion in the surface pressure isotherms for all monolayers, with stronger effect for the composition of cancerous cell with a high Chol content, thus confirming the relevance of lipid composition. This effect decreased considerably when CYP3A4 was incorporated with the formation of CYP3A4-DOX complexes, according to results from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) measurements. Taken together, these results support the hypothesis of CYP3A4 being involved in drug resistance, which may be exploited to design strategies to enhance chemotherapy efficacy.


Assuntos
Citocromo P-450 CYP3A , Lipídeos de Membrana , Humanos , Lipídeos de Membrana/química , Doxorrubicina/farmacologia , Fosfatidiletanolaminas/química , Colesterol/química
6.
Biosensors (Basel) ; 12(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36140070

RESUMO

Cancer is the second leading cause of death globally and early diagnosis is the best strategy to reduce mortality risk. Biosensors to detect cancer biomarkers are based on various principles of detection, including electrochemical, optical, electrical, and mechanical measurements. Despite the advances in the identification of biomarkers and the conventional 2D manufacturing processes, detection methods for cancers still require improvements in terms of selectivity and sensitivity, especially for point-of-care diagnosis. Three-dimensional printing may offer the features to produce complex geometries in the design of high-precision, low-cost sensors. Three-dimensional printing, also known as additive manufacturing, allows for the production of sensitive, user-friendly, and semi-automated sensors, whose composition, geometry, and functionality can be controlled. This paper reviews the recent use of 3D printing in biosensors for cancer diagnosis, highlighting the main advantages and advances achieved with this technology. Additionally, the challenges in 3D printing technology for the mass production of high-performance biosensors for cancer diagnosis are addressed.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais , Humanos , Neoplasias/diagnóstico , Impressão Tridimensional
7.
ACS Appl Mater Interfaces ; 14(27): 31455-31462, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776164

RESUMO

Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (L-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures. The 25-hydroxyvitamin D3 (25(OH)D3) metabolite was detected within 15 min with a limit of detection (LOD) of 0.03 ng mL-1. This high performance was possible due to the careful optimization of the electroactive layer and working conditions for square wave voltammetry (SWV). Electrocrystallization was manipulated by controlling the deposition potential and the molar ratio between HAuCl4 and L-cys. Metabolite detection was performed on human serum and saliva samples with adequate recovery between 97% and 100%. The immunosensors were stable and reproducible, unresponsive to interference from other molecules in human serum and saliva. They can be extended for use as wearable sensors with their mechanical flexibility and possible customization.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Calcifediol , Dendritos , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Humanos , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química
8.
Biomater Adv ; 134: 112676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35599099

RESUMO

Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL-1, and detection limit of 0.16 Ucell mL-1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais/análise , Espectroscopia Dielétrica , Eletrodos , Imunoensaio
9.
Talanta ; 243: 123327, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240367

RESUMO

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis.


Assuntos
Neoplasias Bucais , Saliva , Algoritmos , Nariz Eletrônico , Humanos , Aprendizado de Máquina , Neoplasias Bucais/diagnóstico , Máquina de Vetores de Suporte
10.
ACS Appl Mater Interfaces ; 14(19): 22114-22121, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324137

RESUMO

We report on a photoelectrochemical (PEC) device to detect prostatic-specific antigen (PSA) under visible LED light irradiation within the point-of-care (POC) paradigm. The device consists of a 3D printed miniaturized photoelectrochemical system and a disposable PEC immunosensor made with screen-printed carbon electrodes (SPCEs). The SPCEs were coated with nickel single atoms anchored on graphitic carbon nitride (Ni-gC3N4), titanium dioxide nanoparticles (TiO2), and aryl diazonium salt prepared from p-aminobenzoic acid. The electrodeposited aryl diazonium on Ni-gC3N4/TiO2 decreased the recombination of photogenerated charge carriers, leading to a 3.1-fold increase in the photocurrent compared to pure TiO2. This functionalization strategy provides carboxylic groups to anchor antibodies via the carbodiimide reaction, which may be extended to any other type of immunosensor. Under optimal conditions, the PEC immunosensor was able to detect PSA from 10-16 to 10-8 g mL-1 with a detection limit of 0.06 fg mL-1. The device robustness was confirmed with reproducibility and stability tests. PSA could also be detected in human serum samples, which demonstrates the potential of the PEC immunosensor for clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Antígeno Prostático Específico , Carbono , Técnicas Eletroquímicas , Eletrodos , Grafite , Humanos , Imunoensaio , Luz , Limite de Detecção , Masculino , Compostos de Nitrogênio , Reprodutibilidade dos Testes , Titânio
11.
Colloids Surf B Biointerfaces ; 211: 112301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34968778

RESUMO

Photoinduced hyperthermia with nanomaterials has been proven effective in photothermal therapy (PTT) of tumor tissues, but a precise control in PTT requires determination of the molecular-level mechanisms. In this paper, we determined the mechanisms responsible for the action of photoexcited gold shell-isolated nanoparticles (AuSHINs) in reducing the viability of MCF7 (glandular breast cancer) and especially A549 (lung adenocarcinoma) cells in vitro experiments, while the photoinduced damage to healthy cells was much smaller. The photoinduced effects were more significant than using other nanomaterials, and could be explained by the different effects from incorporating AuSHINs on Langmuir monolayers from lipid extracts of tumoral (MCF7 and A549) and healthy cells. The incorporation of AuSHINs caused similar expansion of the Langmuir monolayers, but Fourier-transform infrared spectroscopy (FTIR) data of Langmuir-Schaefer films (LS) indicated distinct levels of penetration into the monolayers. AuSHINs penetrated deeper into the A549 extract monolayers, affecting the vibrational modes of polar groups and carbon chains, while in MCF7 monolayers penetration was limited to the surroundings of the polar groups. Even smaller insertion was observed for monolayers of the healthy cell extract. The photochemical reactions were modulated by AuSHINs penetration, since upon irradiation the surface area of A549 monolayer decreased owing to lipid chain cleavage by oxidative reactions. For MCF7 monolayers, hydroperoxidation under illumination led to a ca. 5% increase in surface area. The monolayers of healthy cell lipid extract were barely affected by irradiation, consistent with the lowest degree of AuSHINs insertion. In summary, efficient photothermal therapy may be devised by producing AuSHINs capable of penetrating the chain region of tumor cell membranes.


Assuntos
Ouro , Nanopartículas , Membrana Celular , Ouro/farmacologia , Membranas , Oxirredução
12.
Biomed Pharmacother ; 145: 112426, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861633

RESUMO

Glutathione-s-transferase is believed to be involved in the resistance to chemotherapeutic drugs, which depends on the interaction with the cell membranes. In this study, we employed Langmuir monolayers of a mixture of phospholipids and cholesterol (MIX) as models for tumor cell membranes and investigated their interaction with the anticancer drugs cisplatin (CDDP) and doxorubicin (DOX). We found that both DOX and CDDP expand and affect the elasticity of MIX monolayers, but these effects are hindered when glutathione-s-transferase (GST) and its cofactor glutathione (GSH) are incorporated. Changes are induced by DOX or CDDP on the polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) data for MIX/GST/GSH monolayers, thus denoting some degree of interaction that is not sufficient to alter the monolayer mechanical properties. Overall, the results presented here give support to the hypothesis of the inactivation of DOX and CDDP by GST and point to possible directions to detect and fight drug resistance.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Glutationa Transferase/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Modelos Biológicos , Fosfolipídeos/metabolismo
13.
AAPS PharmSciTech ; 23(1): 22, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907488

RESUMO

The assessment of drug taste is crucial for pediatric treatments so that formulations can be developed to enhance their effectiveness. In this study, in vivo and in vitro methods were applied to evaluate the taste of tablets of three drugs administered to children without taste-masking excipients to treat tropical diseases, namely artesunate-mefloquine (ASMQ), praziquantel (PZQ), and benznidazole (BNZ). In the first method, a model of rat palatability was adapted with recirculation to ensure sample dispersion, and the data were analyzed using ANOVA (single factor, 95%). The taste assessment results (in vivo) indicated an aversion to the three medicines, denoted by the animals retracting themselves to the bottom of the box after the first contact with the drugs. For the placebo samples, the animals behaved normally, indicating that taste perception was acceptable. The second method was based on the in vitro analysis of capacitance data from a homemade impedimetric electronic tongue. Consistent with the in vivo taste assessment results, the data points obtained with PZQ, ASMQ, and BNZ were far away from those of their placebos in a map built with the multidimensional projection technique referred to as Interactive Document Mapping (IDMAP). A combined analysis of the results with the two methods allowed us to confirm the bitterness of the three drugs, also pointing to electronic tongues as a promising tool to replace in vivo palatability tests.


Assuntos
Mefloquina , Praziquantel , Animais , Artesunato , Criança , Humanos , Nitroimidazóis , Ratos , Comprimidos , Paladar
14.
Mikrochim Acta ; 189(1): 38, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958417

RESUMO

A sensitive detection of carbohydrate antigen 15-3 (CA15-3) levels may allow for early diagnosis and monitoring the treatment of breast cancer, but this can only be made in routine clinical practice if low-cost immunosensors are available. In this work, we developed a sandwich-type electrochemical immunosensor capable of rapid detection of CA15-3 with an ultra-low limit of detection (LOD) of 0.08 fg mL-1 within a wide linear concentration range from 0.1 fg mL-1 to 1 µg mL-1. The immunosensor had a matrix of a layer-by-layer film of Au nanoparticles and reduced graphene oxide (Au-rGO) co-electrodeposited on screen-printed carbon electrodes (SPCE). The high sensitivity was achieved by using secondary antibodies (Ab2) labeled with horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2) as signal amplifiers, and hydroquinone (HQ) was used as an electron mediator. The immunosensor was selective for CA15-3 in human serum and artificial saliva samples, robust, and stable to permit storage at 4 °C for more than 30 days. With its high performance, the immunosensor may be incorporated into future point-of-care (POC) devices to determine CA15-3 in distinct biological fluids, including in blood and saliva samples.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Eletroquímicas/métodos , Grafite/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Mucina-1/sangue , Anticorpos Imobilizados/imunologia , Armoracia/enzimologia , Biomarcadores Tumorais/imunologia , Ouro/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Hidroquinonas/química , Limite de Detecção , Mucina-1/imunologia , Reprodutibilidade dos Testes , Saliva/química
15.
Colloids Surf B Biointerfaces ; 205: 111889, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098365

RESUMO

The composition of Langmuir monolayers used as cell membrane models is an essential factor for the interaction with biologically-relevant molecules, including pharmaceutical drugs. In this paper, we report the modulation of effects from the antineoplastic drug paclitaxel by the relative concentration of cholesterol in the Langmuir monolayers of ternary mixtures of dipalmitoylphosphatidylcholine, sphingomyelin, and cholesterol. Since the dependence on cholesterol concentration for these monolayers simulating lipid rafts is non-monotonic, we analyzed the surface pressure and compressibility modulus data with the multidimensional projection technique referred to as interactive document mapping (IDMAP). The maximum expansion induced by paclitaxel in surface pressure isotherms was observed for 27% cholesterol, while the compressibility modulus decreased most strongly for the monolayer with 48% cholesterol. Therefore, the physiological action of paclitaxel may vary depending on whether it is associated with penetration in the membrane or with changes in the membrane elasticity.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Paclitaxel , Membrana Celular , Colesterol , Membranas Artificiais , Esfingomielinas
16.
ACS Appl Mater Interfaces ; 13(27): 31406-31417, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185501

RESUMO

The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.


Assuntos
Eletricidade , Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Staphylococcus aureus/fisiologia , Raios Ultravioleta , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
17.
An Acad Bras Cienc ; 93(1): e20200019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787687

RESUMO

The immobilization of the enzyme tyrosinase (Tyr) in lipid matrices can be explored to produce biosensors for detecting polyphenols, which is relevant for the food industry. Herein, we shall demonstrate the importance of the lipid composition to immobilize the enzyme tyrosinase in Langmuir-Blodgett (LB) films. Tyr could be incorporated into Langmuir monolayers of arachidic acid (AA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), having as the main effect an expansion in the monolayers. Results from polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) pointed to electrostatic interactions between the charged residues of Try and the lipid headgroups, in addition to changes in the order of lipid chains. The interaction between Tyr and DPPC in Langmuir monolayers can be correlated with the superior performance of DPPC/Tyr LB films used as biosensors to detect catechol by cyclic voltammetry. The molecular-level interactions assessed via PM-IRRAS are therefore believed to drive an immobilization process for Tyr in the lipid LB matrix and may serve as a general criterion to identify matrices that preserve enzyme activity.


Assuntos
Técnicas Biossensoriais , Fosfolipídeos , Monofenol Mono-Oxigenase , Espectrofotometria Infravermelho , Propriedades de Superfície
18.
Virology ; 557: 62-69, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667752

RESUMO

Dengue virus infection depends on its fusion with the host membrane, where the binding occurs through interaction between proteins on the virus cell surface and specific viral receptors on target membranes. This process is mediated by the fusion peptide located between residues 98 and 112 (DRGWGNGCGLFGKGG) that forms a loop in domain II of dengue E glycoprotein. In this study, we evaluated the role of fusion peptide surrounding regions (88-97 and 113-123) of the Dengue 2 subtype on its interaction with the membrane and fusion activity. These sequences are important to stabilize the fusion peptide loop and increase fusion activity. Three peptides, besides the fusion peptide, were synthesized by SPPS using the Fmoc chemical approach. The first contains the fusion peptide and the C-terminal region of the loop (sequence 98-123); another contains the N-terminal region (88-112) and the larger peptide contains both regions (88-123). The peptides were able to interact with a model membrane. Differences in morphology of the monolayer promoted by the peptides were assessed by Brewster Angle Microscopy (BAM). Our data indicated that the C-terminal region of fusion peptide loop is more efficient in promoting fusion and interacting with the membrane than the N-terminal sequence, which is responsible for the electrostatic initial interaction. We propose a 2-step mechanism for the interaction of the dengue virus fusion peptide with the host membrane, where the N-terminal sequence docks electrostatically on the headgroups and then the C-terminal interacts via hydrophobic forces in the acyl chains.


Assuntos
Vírus da Dengue/química , Dengue/virologia , Peptídeos/genética , Peptídeos/metabolismo , Membrana Celular , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Peptídeos/química
19.
Bioelectrochemistry ; 138: 107692, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33291002

RESUMO

Peptides with an active redox molecule are incorporated into nanostructured films for electrochemical biosensors with stable and controllable physicochemical properties. In this study, we synthesized three ferrocene (Fc)-containing peptides with the sequence Fc-Glu-(Ala)n-Cys-NH2, which could form self-assembled monolayers on gold and be attached to antibodies. The peptide with two alanines (n = 2) yielded the immunosensor with the highest performance in detecting C-reactive protein (CRP), a biomarker of inflammation. Using electrochemical impedance-derived capacitive spectroscopy, the limit of detection was 240 pM with a dynamic range that included clinically relevant CRP concentrations. With a combination of electrochemical methods and polarization-modulated infrared reflection-absorption spectroscopy, we identified the chemical groups involved in the antibody-CRP interaction, and were able to relate the highest performance for the peptide with n = 2 to chain length and efficient packing in the organized films. These strategies to design peptides and methods to fabricate the immunosensors are generic, and can be applied to other types of biosensors, including in low cost platforms for point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Proteína C-Reativa/análise , Imunoensaio/métodos , Nanoestruturas/química , Peptídeos/química , Proteína C-Reativa/química , Impedância Elétrica , Eletroquímica , Compostos Ferrosos/química , Ouro/química , Limite de Detecção , Metalocenos/química
20.
Talanta ; 222: 121444, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167198

RESUMO

The development of simple detection methods aimed at widespread screening and testing is crucial for many infections and diseases, including prostate cancer where early diagnosis increases the chances of cure considerably. In this paper, we report on genosensors with different detection principles for a prostate cancer specific DNA sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz coated with layer-by-layer (LbL) films containing gold nanoparticles and chondroitin sulfate and a layer of a complementary DNA sequence (PCA3 probe). The highest sensitivity was reached with electrochemical impedance spectroscopy with the detection limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and 900 pM for cyclic voltammetry and UV-vis spectroscopy, respectively. That detection could be performed with an optical method is encouraging, as one may envisage extending it to colorimetric tests. Since the morphology of sensing units is known to be affected in detection experiments, we applied machine learning algorithms to classify scanning electron microscopy images of the genosensors and managed to distinguish those exposed to PCA3-containing solutions from control measurements with an accuracy of 99.9%. The performance in distinguishing each individual PCA3 concentration in a multiclass task was lower, with an accuracy of 88.3%, which means that further developments in image analysis are required for this innovative approach.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Antígenos de Neoplasias , Biomarcadores , Biomarcadores Tumorais , Ouro , Humanos , Aprendizado de Máquina , Masculino , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA