Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678788

RESUMO

Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 µg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.

2.
Int J Nanomedicine ; 16: 7353-7367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754189

RESUMO

BACKGROUND: Although bullfrog oil (BFO) exerts anti-inflammatory effects, it has undesirable properties limiting its use. METHODOLOGY: BFO nanocapsules (BFONc) were produced through nanoprecipitation, and their physicochemical and morphological properties were characterized. To evaluate the biocompatibility of the formulation, a mitochondrial activity evaluation assay was conducted, and cell uptake was assessed. The in vitro anti-inflammatory activity was evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO), type-6 interleukin (IL-6), and tumor necrosis factor (TNF) levels. The in vivo anti-inflammatory effect was assessed by quantifying myeloperoxidase (MPO) levels using the carrageenan-induced paw edema model. RESULTS: BFONc showed a particle size of 233 ± 22 nm, a polydispersity index of 0.17 ± 0.03, and a zeta potential of -34 ± 2.6mV. BFONc revealed remarkable biocompatibility and did not induce changes in cell morphology. Furthermore, BFONc decreased ROS levels by 81 ± 4%; however, NO level increased by 72 ± 18%. TNF and IL-6 levels were reduced by approximately 10% and 90%, respectively. Significant in vivo anti-inflammatory activity was observed compared to dexamethasone. MPO levels were reduced up to 2 MPOs/mg. CONCLUSION: Taken together, the results pointed out the remarkable biocompatibility and anti-inflammatory effects of BFONc.


Assuntos
Nanocápsulas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Edema/tratamento farmacológico , Nanocápsulas/uso terapêutico , Extratos Vegetais/uso terapêutico , Rana catesbeiana , Fator de Necrose Tumoral alfa/uso terapêutico
3.
J Oleo Sci ; 69(2): 133-142, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31941865

RESUMO

Bullfrog oil (BFO) is a natural product from the adipose tissue of the amphibian Rana catesbeiana Shaw, a bio-product rich in polyunsaturated fatty acids, which claims anti-inflammatory activity. The objective of this work was to evaluate the cytotoxicity and the anti-inflammatory activity of BFO using in vivo and in vitro assays. Thus, the in vitro cytotoxicity was assessed by the MTT assay. Additionally, the in vivo anti-inflammatory activity was performed by the carrageenan-induced paw edema model in Wistar rats, followed by histological analysis. Moreover, the BFO effect on inflammatory pathways was investigated by in vitro evaluation of the nitric oxide (NO) synthesis, and type-6 interleukin (IL-6) and tumor-necrosis-factor (TNF) levels. In vivo experiments showed that BFO administered by intragastric route produced a significant anti-inflammatory effect, which was as substantial as indomethacin, the positive control. Histopathological analysis confirmed these results, showing the absence of the edema and minimal signs of inflammation in the paws of rats treated with BFO. The MTT results showed that BFO at all tested concentrations had no toxic effect against a macrophage cell line, not affecting the cell viability. In addition, after 48 hours of treatment, the BFO itself and its blend with Cetiol®-V (1:1v/v) at 200 µg.mL-1 were able to reduce the NO synthesis, and the IL-6 and TNF levels up to 35 ± 2%, 40 ± 6%, and 12 ± 3%, respectively. Therefore, these results provide unprecedented scientific evidence of the anti-inflammatory effect of BFO, suggesting its potential as a new candidate for the development of pharmaceutical products with anti-inflammatory activity.


Assuntos
Carragenina , Edema/induzido quimicamente , Edema/metabolismo , Mediadores da Inflamação/metabolismo , Rana catesbeiana , Extratos de Tecidos/farmacologia , Animais , Anti-Inflamatórios , Técnicas In Vitro , Masculino , Ratos Wistar , Extratos de Tecidos/efeitos adversos
4.
Biomed Pharmacother ; 117: 109103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31203130

RESUMO

Bullfrog oil, an animal oil extracted from the adipose tissue of Rana catesbeiana Shaw, showed promising cytotoxic activity against melanoma cells and, therefore, has the potential to become a pharmaceutical active compound. However, there is a lack of information regarding the pathways involved in its pharmacological activity. Thus, the aim of this study was to investigate and elucidate the cytotoxic effect of this oil against A2058 human melanoma cells. The cytotoxic potential was evaluated by the MTT assay, the cell cycle analysis and the cell death assay. In addition, the apoptotic potential was investigated by (i) the DNA fragmentation using propidium iodide staining analysis, (ii) the evaluation of mitochondrial membrane potential and (iii) the determination of intracellular Reactive Oxygen Species (ROS) level. The results showed that the bullfrog oil was able to promote a time-dependent cytotoxic effect, decreasing cell viability to 38% after 72 h of treatment without affecting the cell cycle. Additionally, the bullfrog oil induced the apoptosis in A2058 cells, increasing up to 50 ±â€¯13% of the intracellular ROS level, maintaining the DNA integrity and promoting an approximate decrease of 35 ±â€¯5% in the mitochondrial membrane potential. It can be concluded that the in vitro cytotoxic effect of the bullfrog oil in A2058 human melanoma cells is mediated by oxidative stress that induces mitochondrial dysfunction, triggering the apoptosis. These unprecedented results highlight the pharmacological potential of bullfrog oil and provide important information to support studies on the development of new pharmaceutical products for complementary and alternative treatments for melanoma.


Assuntos
Apoptose/efeitos dos fármacos , Melanoma/patologia , Mitocôndrias/patologia , Óleos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Rana catesbeiana/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
AAPS PharmSciTech ; 19(6): 2585-2597, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29916194

RESUMO

Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50 ± 0.14 nm and a polydispersity index of 0.167 ± 0.006. This system was able to entrap AmB up to 2 mg mL-1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system's thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.


Assuntos
Anfotericina B/síntese química , Antifúngicos/síntese química , Portadores de Fármacos/síntese química , Emulsões/síntese química , Nanopartículas/química , Óleos/síntese química , Anfotericina B/administração & dosagem , Animais , Antifúngicos/administração & dosagem , Candida/efeitos dos fármacos , Candida/fisiologia , Portadores de Fármacos/administração & dosagem , Emulsões/administração & dosagem , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Nanopartículas/administração & dosagem , Óleos/administração & dosagem , Rana catesbeiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA